backend-api/ingestion/adapters/web_scraper_adapter.py
2025-05-11 16:01:49 +07:00

175 lines
6.1 KiB
Python

"""
Web scraper adapter using crawl4ai to extract structured data.
"""
import asyncio
import json
from typing import List, Dict, Any, Optional
from crawl4ai import (
AsyncWebCrawler,
BrowserConfig,
CrawlerRunConfig,
CacheMode,
LLMConfig,
CrawlResult,
)
from crawl4ai.extraction_strategy import (
JsonCssExtractionStrategy,
LLMExtractionStrategy,
ExtractionStrategy,
)
from .base import DataSourceAdapter
from loguru import logger
class WebScraperAdapter(DataSourceAdapter):
"""
Adapter for web scraping using crawl4ai.
"""
def __init__(
self,
urls: List[str],
schema_file: Optional[str] = None,
prompt: Optional[str] = None,
llm_provider: str = "openai/gpt-4",
api_key: Optional[str] = None,
output_format: str = "json",
verbose: bool = False,
cache_mode: str = "ENABLED",
):
"""
Initialize the scraper adapter.
Args:
urls: List of URLs to scrape.
schema_file: Path to a JSON file with CSS extraction schema.
prompt: Prompt for LLM-based extraction.
llm_provider: LLM provider identifier.
api_key: API key for the LLM provider.
output_format: Desired format for the extracted data.
verbose: Enable verbose logging.
cache_mode: Crawl cache mode (e.g., 'ENABLED').
"""
self.urls = urls
self.schema_file = schema_file
self.prompt = prompt
self.llm_provider = llm_provider
self.api_key = api_key
self.output_format = output_format
self.verbose = verbose
self.cache_mode = cache_mode
logger.info(f"Initialized WebScraperAdapter for URLs: {urls}")
def fetch(self) -> List[Dict[str, Any]]:
"""
Synchronously fetch data by running the async crawler.
Returns:
List of extracted records.
Raises:
RuntimeError: On failure during crawling or extraction.
"""
logger.info("Starting synchronous fetch for web scraping.")
try:
return asyncio.run(self._fetch_async())
except Exception as e:
logger.error(f"Web scraping failed: {e}")
raise RuntimeError(f"Web scraping failed: {e}")
async def _fetch_async(self) -> List[Dict[str, Any]]:
"""
Internal async method to perform crawling and extraction.
"""
logger.info("Starting async web scraping fetch.")
# Initialize crawler
browser_cfg = BrowserConfig(headless=True, verbose=self.verbose)
crawler = AsyncWebCrawler(config=browser_cfg)
await crawler.start()
# Prepare extraction strategy
llm_cfg = LLMConfig(provider=self.llm_provider, api_token=self.api_key)
extraction_strategy: Optional[ExtractionStrategy] = None
if self.schema_file:
try:
with open(self.schema_file, "r", encoding="utf-8") as f:
schema = json.load(f)
extraction_strategy = JsonCssExtractionStrategy(
schema=schema, verbose=self.verbose
)
logger.debug(f"Loaded schema file: {self.schema_file}")
except Exception as e:
logger.error(f"Failed to load schema file '{self.schema_file}': {e}")
await crawler.close()
raise RuntimeError(
f"Failed to load schema file '{self.schema_file}': {e}"
)
elif self.prompt:
extraction_strategy = LLMExtractionStrategy(
llm_config=llm_cfg,
instruction=self.prompt,
extraction_type="schema",
apply_chunking=True,
verbose=self.verbose,
)
logger.debug("Using LLM extraction strategy.")
else:
logger.error("Either 'schema_file' or 'prompt' must be provided.")
await crawler.close()
raise ValueError("Either 'schema_file' or 'prompt' must be provided.")
# Configure cache mode
try:
cache_enum = getattr(CacheMode, self.cache_mode.upper())
except AttributeError:
logger.warning(f"Invalid cache mode '{self.cache_mode}', defaulting to ENABLED.")
cache_enum = CacheMode.ENABLED
run_cfg = CrawlerRunConfig(
cache_mode=cache_enum,
extraction_strategy=extraction_strategy,
verbose=self.verbose,
)
# Execute crawl
try:
logger.info(f"Crawling URLs: {self.urls}")
results: List[CrawlResult] = await crawler.arun_many(
urls=self.urls, config=run_cfg
)
logger.debug(f"Crawling completed. Results: {results}")
finally:
await crawler.close()
# Process crawl results
records: List[Dict[str, Any]] = []
for res in results:
if not res.success or not res.extracted_content:
logger.warning(f"Skipping failed or empty result for URL: {getattr(res, 'url', None)}")
continue
try:
content = json.loads(res.extracted_content)
logger.debug(f"Parsed extracted content for URL: {res.url}")
except Exception:
logger.error(f"Failed to parse extracted content for URL: {res.url}")
continue
if content is None:
logger.warning(f"Extracted content is None for URL: {res.url}")
continue
if isinstance(content, list):
for item in content:
if isinstance(item, dict):
item["source_url"] = res.url
records.extend(content)
elif isinstance(content, dict):
content["source_url"] = res.url
records.append(content)
else:
logger.warning(f"Extracted content for URL {res.url} is not a list or dict: {type(content)}")
logger.info(f"Web scraping completed. Extracted {len(records)} records.")
return records