mirror of
https://github.com/Sosokker/CPP-Neural-Network.git
synced 2025-12-18 18:14:04 +01:00
Update include path/ Change function type in Loss
This commit is contained in:
parent
874ba254ba
commit
ae1da7bfd9
@ -1,4 +1,4 @@
|
|||||||
#include <Eigen/Dense>
|
#include "../../include/Eigen/Dense"
|
||||||
#include "Layers.hpp"
|
#include "Layers.hpp"
|
||||||
|
|
||||||
class DenseLayer : public Layer {
|
class DenseLayer : public Layer {
|
||||||
|
|||||||
@ -1,7 +1,7 @@
|
|||||||
#ifndef LAYERS_HPP
|
#ifndef LAYERS_HPP
|
||||||
#define LAYERS_HPP
|
#define LAYERS_HPP
|
||||||
|
|
||||||
#include <Eigen/Dense>
|
#include "../../include/Eigen/Dense"
|
||||||
|
|
||||||
class Layer {
|
class Layer {
|
||||||
public:
|
public:
|
||||||
|
|||||||
@ -1,16 +1,16 @@
|
|||||||
#include <Eigen/Dense>
|
#include "../../include/Eigen/Dense"
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
double mse(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
Eigen::VectorXd mse(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
||||||
return (y_true - y_pred).squaredNorm() / y_true.size();
|
return (y_true - y_pred).array().square() / y_true.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
Eigen::VectorXd mse_prime(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
Eigen::VectorXd mse_prime(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
||||||
return 2.0 * (y_pred - y_true) / y_true.size();
|
return 2.0 * (y_pred - y_true) / y_true.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
double binary_cross_entropy(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
Eigen::VectorXd binary_cross_entropy(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
||||||
return -((y_true.array() * y_pred.array().log()) + ((1 - y_true.array()) * (1 - y_pred.array()).log())).mean();
|
return -((y_true.array() * y_pred.array().log()) + ((1 - y_true.array()) * (1 - y_pred.array()).log())) / y_true.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
Eigen::VectorXd binary_cross_entropy_prime(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
Eigen::VectorXd binary_cross_entropy_prime(const Eigen::VectorXd& y_true, const Eigen::VectorXd& y_pred) {
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user