Implement parse_poly to parse simple polynomial function

This commit is contained in:
Sirin Puenggun 2022-12-10 23:48:50 +07:00
parent c7887b71f9
commit a3f68682b7

View File

@ -7,6 +7,9 @@ def add_neg_sign(expr: str, is_neg: bool) -> str:
expr = "-" + expr
return expr
def add_exp_sign(expr):
return expr.replace("^", "**")
def is_neg(expr, i) -> bool:
"""
Check if input expression is negative or not.
@ -186,12 +189,13 @@ def insert_mul_sign(expr):
x*x
>>> insert_mul_sign("xy+xsin(xy)+12x+y")
x*y+x*sin(x*y)+12*x+y
>>> insert_mul_sign("(12x)(1+(12y+sin(x^3-2))(x+2))")
(12x)*(1+(12*y+sin(x^3-2))*(x+2))
"""
function_list = [
"sin","cos","tan", "cosec", "sec", "cot",
"arcsin","arccos","arctan", "arcsec",
"arccosec", "arccot", "asin", "acos",
"atan", "asec", "acosec", "acot"
"arccosec", "arccot"
]
i = 0
result = ""
@ -207,7 +211,6 @@ def insert_mul_sign(expr):
while i < len(expr):
char = expr[i]
check_func, f_name, last_index = is_func(expr, i, f_name)
if is_num(char):
num, i = parsing_num(expr, i)
result += add_neg_sign(num, neg)
@ -216,12 +219,12 @@ def insert_mul_sign(expr):
if expr[-1] != char:
if expr[i] != ")" and not is_op(expr[i]):
result += "*"
elif expr[i] == "(":
result += "*"
elif char == ")":
try:
c = expr[i+1]
result += char
if c != ")":
result += "*"
if expr[i+1] != ")" and is_op(expr[i+1]):
result += ")*"
except IndexError:
result += char
i += 1
@ -231,10 +234,15 @@ def insert_mul_sign(expr):
i += 1
elif check_func:
for f_check in function_list:
if f_check in f_name:
real_func_name = f_check
check_list = [1 for n in function_list if n in f_name]
if sum(check_list) > 0:
result += f_name
i = last_index
result += f_name.replace(real_func_name, "*")
result += real_func_name
i = last_index + 1
else:
count = len(f_name)
for ind in range(len(f_name)+1):
@ -254,11 +262,68 @@ def insert_mul_sign(expr):
return result
import re
def parse_poly(expr: str) -> list:
"""
Parse string of basic polynomial expression.
Note: Only Specific form of polynomial that
this function can parse.
"""
pattern = re.compile('([-+]?\s*\d*\.?\d*)(x?\^?\d?)')
expo_pattern = re.compile('x\^?(\d)?')
coeff_var_list = pattern.findall(expr)
store = {}
highest_expo = 0
for coeff, var in coeff_var_list:
if not coeff:
coeff = 0
elif coeff == '-':
coeff = -1
elif coeff == '+':
coeff = 1
try:
coeff = eval(coeff)
except:
pass
expo = expo_pattern.findall(var)
if len(expo) == 0:
expo = 0
elif '' in expo:
expo = 1
else:
expo = expo[0]
try:
expo = eval(expo)
except:
pass
if expo >= highest_expo:
highest_expo = expo
temp = [coeff, expo]
if var not in store:
store[var] = temp
else:
store[var][0] += temp[0]
print(store)
result = [0 for i in range(highest_expo+1)]
for item in store.values():
coeff = item[0]
expo = item[1]
result[expo] = coeff
return result
# print(parse_poly("-x^2+2x"))
# print(make_postfix("(2-3+4)*(5+6*7)"))
# print(make_postfix("12sin(x^2)+(4x+12*3)-5"))
# print(insert_mul_sign("12x"))
# print(insert_mul_sign("5x+12y+421abcde+1"))
# print(insert_mul_sign("12((x+12x)x)"))
# print(insert_mul_sign("xsin(x^2)"))
# print(insert_mul_sign("5(1+2*3^12)(12-5(4^2)) + (1-3*4)12"))
# print(insert_mul_sign("xy+xsin(xy)+12x+y"))
# print(insert_mul_sign("5(1+2*3^12)(12-5(4^2)) + (1-3*4)12"))
# print(insert_mul_sign("(1+2)(3+4)"))
# print(add_exp_sign("x^2^3"))
# print(parse_poly("x^4+1+12x^3-3x^2+5"))