mirror of
https://github.com/Sosokker/Calculator-for-Matrix-and-Algebra.git
synced 2025-12-18 20:54:05 +01:00
286 lines
9.2 KiB
Python
286 lines
9.2 KiB
Python
from nessesary.parser.parser import parse_poly
|
|
from nessesary.fraction import to_fraction
|
|
from math import acos, cos, pi
|
|
|
|
class Polynomial:
|
|
def __init__(self, poly, fracmode=False):
|
|
if isinstance(poly, str):
|
|
self.coeff = parse_poly(poly)
|
|
self.degree = len(parse_poly(poly)) - 1
|
|
self.string_form = poly
|
|
elif isinstance(poly, list):
|
|
self.coeff = poly
|
|
self.degree = len(poly) - 1
|
|
self.string_form = self.to_str()
|
|
else:
|
|
raise ValueError
|
|
self.fracmode = fracmode
|
|
if fracmode:
|
|
for c_index in range(len(self.coeff)):
|
|
try:
|
|
self.coeff[c_index] = to_fraction(self.coeff[c_index])
|
|
except:
|
|
raise ValueError("Can't turn all number into fraction.")
|
|
|
|
while len(self.coeff) < 3:
|
|
self.coeff.append(0)
|
|
|
|
self.degree = len(self.coeff)
|
|
|
|
#[degree0, degree1, degree2]
|
|
def __add__(self, other):
|
|
"""
|
|
>>> p1 = Polynomial([1, 1, 1, 1, 1])
|
|
>>> p2 = Polynomial([1, 1, 1, 1, 1])
|
|
>>> p3 = p1 + p2
|
|
>>> str(p3)
|
|
'2x^4+2x^3+2x^2+2x+2'
|
|
"""
|
|
if isinstance(other, Polynomial):
|
|
large_index = max([self.degree, other.degree])
|
|
temp = [0 for i in range(large_index)]
|
|
result = Polynomial(temp)
|
|
for degree_index in range(self.degree):
|
|
result.coeff[degree_index] = self.coeff[degree_index] + other.coeff[degree_index]
|
|
return result
|
|
elif isinstance(other, (int, float)):
|
|
result = Polynomial(self.coeff)
|
|
result.coeff[0] += other
|
|
return result
|
|
|
|
def __sub__(self, other):
|
|
"""
|
|
>>> p1 = Polynomial([1, 1, 1, 1, 1])
|
|
>>> p2 = Polynomial([1, 1, 1, 1, 1])
|
|
>>> p3 = p1 - p2
|
|
>>> str(p3)
|
|
'0'
|
|
"""
|
|
if isinstance(other, Polynomial):
|
|
large_index = max([self.degree, other.degree])
|
|
temp = [0 for i in range(large_index)]
|
|
result = Polynomial(temp)
|
|
for degree_index in range(self.degree):
|
|
result.coeff[degree_index] = self.coeff[degree_index] - other.coeff[degree_index]
|
|
return result
|
|
elif isinstance(other, (int, float)):
|
|
result = Polynomial(self.coeff)
|
|
result.coeff[0] -= other
|
|
return result
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
>>> p1 = Polynomial([1, 1])
|
|
>>> p2 = Polynomial([1, 1])
|
|
>>> p3 = p1 * p2
|
|
>>> str(p3)
|
|
x^2+2x+1
|
|
"""
|
|
if isinstance(other, Polynomial):
|
|
result = [0 for i in self.degree + other.degree]
|
|
for self_index in range(self.degree):
|
|
for other_index in range(other.degree):
|
|
result[self_index+other_index] += self.coeff[self_index]*other.coeff[other_index]
|
|
poly_result = Polynomial(result)
|
|
return poly_result
|
|
elif isinstance(other, int) or isinstance(other, float):
|
|
result = [0 for i in self.degree + other.degree]
|
|
for self_index in range(self.degree):
|
|
result[self_index+other_index] += self.coeff[self_index]*other
|
|
poly_result = Polynomial(result)
|
|
return poly_result
|
|
|
|
def __pow__(self, other):
|
|
"""
|
|
>>> p1 = Polynomial([1, 1])
|
|
>>> str(p1 ** 2)
|
|
x^2+2x+1
|
|
"""
|
|
result = Polynomial([0])
|
|
if isinstance(other, int) and other >= 0:
|
|
if other == 0:
|
|
return Polynomial([1])
|
|
else:
|
|
for i in range(other):
|
|
result += self * self
|
|
return result
|
|
|
|
def __truediv__(self):
|
|
pass
|
|
|
|
def to_str(self) -> str:
|
|
"""
|
|
convert coefficient list into string.
|
|
>>> p1 = Polynomial([1, 1, 1, 1, 1])
|
|
>>> p1.to_str()
|
|
'x^4+x^3+x^2+x+1'
|
|
>>> p2 = Polynomial([-2, 4, 0, -1, 2])
|
|
>>> p2.to_str()
|
|
'2x^4-x^3+4x-2'
|
|
"""
|
|
# result = []
|
|
# for ind in range(len(self.coeff)):
|
|
# if self.coeff[ind]:
|
|
# if ind == 0:
|
|
# temp = ""
|
|
# elif ind == 1:
|
|
# temp = "x"
|
|
# else:
|
|
# temp = "x^"+str(ind)
|
|
# result.append(str(self.coeff[ind])+temp)
|
|
|
|
# if result:
|
|
# result.reverse()
|
|
# return "+".join(result)
|
|
# else:
|
|
# return "0"
|
|
last_count = len(str(self.coeff[-1]))
|
|
result = []
|
|
i = len(self.coeff) - 1
|
|
while i >= 0:
|
|
if self.coeff[i] != 0:
|
|
if self.coeff[i] < 0:
|
|
result.append("-")
|
|
|
|
elif len(self.coeff) != 0:
|
|
result.append("+")
|
|
|
|
elif self.coeff[i] == 0:
|
|
i -= 1
|
|
continue
|
|
|
|
if self.coeff[i] != 1 and self.coeff[i] != -1:
|
|
result.append(str(abs(self.coeff[i])))
|
|
|
|
if (i == len(self.coeff) - 1):
|
|
result.append(str(self.coeff[i]))
|
|
|
|
if (self.coeff[i] == 1) and (i != len(self.coeff) - 1):
|
|
result.append(str(1))
|
|
|
|
if i == 1:
|
|
result.append("x")
|
|
|
|
if i > 1:
|
|
result.append("x^"+str(i))
|
|
i -= 1
|
|
|
|
if result[0] == "+" or result[0] == "-":
|
|
del result[0]
|
|
result = "".join(result)
|
|
|
|
if self.coeff[-1] > 0:
|
|
return result[last_count:]
|
|
elif self.coeff[-1] < 0:
|
|
return result[last_count-1:]
|
|
else:
|
|
return result
|
|
|
|
def solve(self) -> dict:
|
|
degree = len(self.coeff) - 1
|
|
sol = [{"real":0, "imag":0}, {"real":0, "imag":0}]
|
|
if degree == 2:
|
|
a, b, c = self.coeff[2], self.coeff[1], self.coeff[0]
|
|
if a == 0:
|
|
if b == 0:
|
|
if c == 0:
|
|
return sol
|
|
else:
|
|
sol[0]["real"] = c
|
|
del sol[1]
|
|
return sol
|
|
else:
|
|
sol[0]["real"] = -c/b
|
|
del sol[1]
|
|
return sol
|
|
else:
|
|
root_term = b**2-4*a*c
|
|
if root_term < 0:
|
|
# res1 = f"({-b}+{to_imag(root_term**0.5)})/{2*a}"
|
|
# res2 = f"({-b}-{to_imag(root_term**0.5)})/{2*a}"
|
|
sol[0]["real"] = -b/(2*a)
|
|
sol[1]["real"] = -b/(2*a)
|
|
sol[0]["imag"] = (abs(root_term)**0.5)/2*a
|
|
sol[1]["imag"] = (-abs(root_term)**0.5)/2*a
|
|
return sol
|
|
else:
|
|
if root_term == 0:
|
|
sol[0]["real"] = -b/(2*a)
|
|
del sol[1]
|
|
return sol
|
|
else:
|
|
sol[0]["real"] = (-b-(root_term)**0.5)/(2*a)
|
|
sol[1]["real"] = (-b+(root_term)**0.5)/(2*a)
|
|
return sol
|
|
|
|
elif degree == 3:
|
|
a, b = self.coeff[3], self.coeff[2]
|
|
c, d = self.coeff[1], self.coeff[0]
|
|
|
|
b, c, d = b/a, c/a, d/a
|
|
|
|
temp_q = 3.0*c-(b*b)/9.0
|
|
temp_r = (-(27.0*d)+b*(9*c-2.0*(b * b)))/54.0
|
|
first_term = b/3
|
|
temp_check = (temp_q**3)+(temp_r**2)
|
|
sol = [{"real":0, "imag":0},{"real":0, "imag":0},{"real":0, "imag":0}]
|
|
|
|
if temp_check > 0:
|
|
temp = 1/3
|
|
i = temp_r + (temp_check**0.5)
|
|
if i < 0:
|
|
i = -(-i**(temp))
|
|
else:
|
|
i = i**temp
|
|
j = temp_r - (temp_check)**0.5
|
|
if j < 0:
|
|
j = -(-j**(temp))
|
|
else:
|
|
j = j**temp
|
|
|
|
sol[0]["real"] = -first_term + i + j
|
|
sol[2]["real"] = -(first_term+((i+j)/2))
|
|
sol[1]["real"] = (first_term+((i+j)/2))
|
|
sol[1]["imag"] = (3**0.5) * (-i+j)/2
|
|
sol[2]["imag"] = -sol[1]["imag"]
|
|
|
|
return sol
|
|
|
|
elif temp_check == 0:
|
|
if temp_r < 0:
|
|
new_r = (-temp_r)**(1/3)
|
|
else:
|
|
new_r = temp_r**(1/3)
|
|
|
|
sol[0]["real"] = -first_term+2*new_r
|
|
sol[1]["real"] = -(new_r+first_term)
|
|
sol[2]["real"] = sol[1]["real"]
|
|
|
|
return sol
|
|
|
|
else:
|
|
temp2 = acos(temp_r/(-temp_q*-temp_q*-temp_q)**0.5)
|
|
temp = -first_term + 2*temp_q**0.5
|
|
|
|
sol[0]["real"] = temp*cos(temp2/3)
|
|
sol[1]["real"] = temp*cos((temp2+2*pi)/3)
|
|
sol[2]["real"] = temp*cos((temp2+4*pi)/3)
|
|
return sol
|
|
|
|
elif degree == 4:
|
|
pass
|
|
|
|
def __str__(self) -> str:
|
|
return self.to_str()
|
|
|
|
|
|
# p1 = Polynomial("x^2+2x+1", fracmode=True)
|
|
# p2 = Polynomial("x^2+2x+1", fracmode=False)
|
|
|
|
# print(p1.solve())
|
|
|
|
# if __name__ == "__main__":
|
|
# import doctest
|
|
# doctest.testmod()
|
|
# Use the following line INSTEAD if you want to print all tests anyway.
|
|
# doctest.testmod(verbose = True) |