Calculator-for-Matrix-and-A.../nessesary/matrix.py
2022-12-05 17:16:30 +07:00

154 lines
5.1 KiB
Python

class Matrix:
"""
We will write matrix in form of nd-array
Example:
- [[1, 2], [3, 4]] is a 2x2 Matrix (row x column)
- [[1, 2]] is 1x2 Matrix
"""
def __init__(self, array: list):
self.array = array
self.row = len(array)
self.column = len(array[0])
def __add__(self, other):
"""
Add matrix up and those matrix need same dimesional.
>>> m1 = Matrix([[1, 2], [3, 4]])
>>> m2 = Matrix([[1, 2], [3, 4]])
>>> m3 = m1 + m2
>>> m3.array
[[2, 4], [6, 8]]
"""
if (self.row != other.row) and (self.column != other.column):
raise ValueError("Need matrix with same dimesional when add matrix up.")
for row_index in range(self.row):
for column_index in range(self.column):
self.array[row_index][column_index] += other.array[row_index][column_index]
return self
def __sub__(self, other):
"""
Substract matrix up and those matrix need same dimesional.
>>> m1 = Matrix([[1, 2], [3, 4]])
>>> m2 = Matrix([[1, 2], [3, 4]])
>>> m3 = m1 - m2
>>> m3.array
[[0, 0], [0, 0]]
"""
if (self.row != other.row) and (self.column != other.column):
raise ValueError("Need matrix with same dimesional when add matrix up.")
for row_index in range(self.row):
for column_index in range(self.column):
self.array[row_index][column_index] -= other.array[row_index][column_index]
return self
def __mul__(self, other):
"""
Multiply matrix up and those matrix need same dimesional.
>>> m1 = Matrix([[1, 2], [3, 4]])
>>> m2 = Matrix([[1, 2], [3, 4]])
>>> m3 = m1 * m2
>>> m3.array
[[7, 10], [15, 22]]
>>> m1 = Matrix([[1, 2], [3, 4]])
>>> m2 = 2
>>> m4 = m1 * m2
>>> m4.array
[[2, 4], [6, 8]]
"""
if isinstance(other, int) or isinstance(other, float):
for row in range(self.row):
for col in range(self.column):
self.array[row][col] = self.array[row][col] * other
return self
else:
if self.column == other.row:
new_matrix = Matrix([[0 for i in range(other.column)] for k in range(self.row)])
for row_index in range(self.row):
for col_index in range(self.column):
for k in range(other.row):
new_matrix.array[row_index][col_index] += self.array[row_index][k] * other.array[k][col_index]
return new_matrix
else:
raise ValueError("Can't multiply these matrix")
def copy_matrix(self):
"""
>>> m = Matrix([[1,2]])
>>> m2 = m.copy_matrix()
>>> m2 is m
False
"""
arr = self.array
new_matrix = Matrix(arr)
return new_matrix
def new_matrix(a,i):#FUNCTION TO FIND THE NEW MATRIX
arr = a.copy_matrix()
if len(arr) == 2:
return arr
else:
arr.pop(0)
for j in arr:
j.pop(i)
return arr
def determinant(self):
"""
Using Cofactor Expanion.
|M| = sum[M(1,i)*Cofactor(M(1,i)) from i = 1 to n]
Find determinant of Square Matrix
>>> m1 = Matrix([[1,2,3],[1,2,3],[1,2,3]])
>>> m1.determinant()
0
>>> m2 = Matrix([[13212,1,3,8321],[27,2,4,6],[321,5,2,-14],[312,21,211,3]])
>>> m2.determinant()
858575226
"""
if self.row != self.column:
raise ValueError(f"Can't Find determinant of {self.row} x {self.column} Matrix")
if len(self.array) == 2 and len(self.array[0]) == 2:
return self.array[0][0] * self.array[1][1] - self.array[1][0] * self.array[0][1]
det = 0
for col in range(len(self.array)):
temp = self.copy_matrix()
minor = lambda i, j : [row[:j] + row[j+1:] for row in (temp.array[:i]+temp.array[i+1:])]
temp.array = minor(0,col)
det += ((-1)**col)*self.array[0][col]*temp.determinant()
return det
def tranpose(self):
"""
Substract matrix up and those matrix need same dimesional.
>>> m1 = Matrix([[1, 2, 3], [3, 4, 5]])
>>> m1 = m1.tranpose()
>>> m1.array
[[1, 3], [2, 4], [3, 5]]
"""
new_matrix = Matrix([[0 for i in range(self.row)] for k in range(self.column)])
for row_index in range(self.row):
for col_index in range(self.column):
new_matrix.array[col_index][row_index] += self.array[row_index][col_index]
return new_matrix
def inverse(self):
det = self.determinant()
pass
def __str__(self):
return f'Matrix({self.array})'
if __name__ == "__main__":
import doctest
doctest.testmod()
# Use the following line INSTEAD if you want to print all tests anyway.
# doctest.testmod(verbose = True)