mirror of
https://github.com/Sosokker/Calculator-for-Matrix-and-Algebra.git
synced 2025-12-18 20:54:05 +01:00
170 lines
5.3 KiB
Python
170 lines
5.3 KiB
Python
class Matrix:
|
|
"""
|
|
We will write matrix in form of nd-array
|
|
|
|
Example:
|
|
- [[1, 2], [3, 4]] is a 2x2 Matrix (row x column)
|
|
- [[1, 2]] is 1x2 Matrix
|
|
"""
|
|
|
|
def __init__(self, array: list):
|
|
self.array = array
|
|
self.row = len(array)
|
|
self.column = len(array[0])
|
|
|
|
def __add__(self, other):
|
|
"""
|
|
Add matrix up and those matrix need same dimesional.
|
|
>>> m1 = Matrix([[1, 2], [3, 4]])
|
|
>>> m2 = Matrix([[1, 2], [3, 4]])
|
|
>>> m3 = m1 + m2
|
|
>>> m3.array
|
|
[[2, 4], [6, 8]]
|
|
"""
|
|
|
|
if (self.row != other.row) and (self.column != other.column):
|
|
raise ValueError("Need matrix with same dimesional when add matrix up.")
|
|
for row_index in range(self.row):
|
|
for column_index in range(self.column):
|
|
self.array[row_index][column_index] += other.array[row_index][column_index]
|
|
return self
|
|
|
|
def __sub__(self, other):
|
|
"""
|
|
Substract matrix up and those matrix need same dimesional.
|
|
>>> m1 = Matrix([[1, 2], [3, 4]])
|
|
>>> m2 = Matrix([[1, 2], [3, 4]])
|
|
>>> m3 = m1 - m2
|
|
>>> m3.array
|
|
[[0, 0], [0, 0]]
|
|
"""
|
|
|
|
if (self.row != other.row) and (self.column != other.column):
|
|
raise ValueError("Need matrix with same dimesional when add matrix up.")
|
|
for row_index in range(self.row):
|
|
for column_index in range(self.column):
|
|
self.array[row_index][column_index] -= other.array[row_index][column_index]
|
|
return self
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
Multiply matrix up and those matrix need same dimesional.
|
|
>>> m1 = Matrix([[1, 2], [3, 4]])
|
|
>>> m2 = Matrix([[1, 2], [3, 4]])
|
|
>>> m3 = m1 * m2
|
|
>>> m3.array
|
|
[[7, 10], [15, 22]]
|
|
"""
|
|
if self.column == other.row:
|
|
new_matrix = Matrix([[0 for i in range(other.column)] for k in range(self.row)])
|
|
for row_index in range(self.row):
|
|
for col_index in range(self.column):
|
|
for k in range(other.row):
|
|
new_matrix.array[row_index][col_index] += self.array[row_index][k] * other.array[k][col_index]
|
|
return new_matrix
|
|
else:
|
|
raise ValueError("Can't multiply these matrix")
|
|
|
|
def copy_matrix(self):
|
|
"""
|
|
>>> m = Matrix([[1,2]])
|
|
>>> m2 = m.copy_matrix()
|
|
>>> m2 is m
|
|
False
|
|
"""
|
|
arr = self.array
|
|
new_matrix = Matrix(arr)
|
|
return new_matrix
|
|
|
|
def determinant(self):
|
|
"""
|
|
Find determinant of Square Matrix
|
|
>>> m1 = Matrix([[1,2,3],[1,2,3],[1,2,3]])
|
|
>>> d = m1.determinant()
|
|
>>> d
|
|
0
|
|
"""
|
|
if self.row != self.column:
|
|
raise ValueError(f"Can't Find determinant of {self.row} x {self.column} Matrix")
|
|
|
|
if self.row == 2 and self.column == 2:
|
|
return self.array[0][0] * self.array[1][1] - self.array[1][0] * self.array[0][1]
|
|
|
|
# value = 0
|
|
# index_cut_column = [range(self.row)]
|
|
|
|
# for column_to_cut in index_cut_column:
|
|
# temp_matrix = self.copy_matrix()
|
|
# temp_matrix.array = temp_matrix.array[1:]
|
|
# row_count = len(temp_matrix.array)
|
|
|
|
# for row_index in range(row_count):
|
|
# temp_matrix.array[row_index] = temp_matrix.array[row_index][0:column_to_cut] + temp_matrix.array[row_index][column_to_cut+1:]
|
|
|
|
# coeff_sign = (-1) ** (column_to_cut % 2)
|
|
# sub_determinant = temp_matrix.determinant()
|
|
# value = coeff_sign * self.array[0][column_to_cut] * sub_determinant
|
|
value = 0
|
|
for x in range(0, self.row):
|
|
|
|
i = 0
|
|
j = x
|
|
|
|
sum_mul = 1
|
|
for y in range(0, self.row):
|
|
sum_mul *= self.array[i][j]
|
|
i += 1
|
|
j += 1
|
|
if (j >= self.row):
|
|
j = 0
|
|
|
|
value += sum_mul
|
|
|
|
sum_sub = 0
|
|
for x in range(0, self.row):
|
|
|
|
i = 0
|
|
j = self.row - 1 - x
|
|
|
|
sum_mul = 1
|
|
for y in range(0, self.row):
|
|
sum_mul *= self.array[i][j]
|
|
i += 1
|
|
j -= 1
|
|
if (j < 0):
|
|
j = self.row - 1
|
|
sum_sub -= sum_mul
|
|
|
|
determinant = value + sum_sub
|
|
return determinant
|
|
|
|
def tranpose(self):
|
|
"""
|
|
Substract matrix up and those matrix need same dimesional.
|
|
>>> m1 = Matrix([[1, 2, 3], [3, 4, 5]])
|
|
>>> m1 = m1.tranpose()
|
|
>>> m1.array
|
|
[[1, 3], [2, 4], [3, 5]]
|
|
"""
|
|
new_matrix = Matrix([[0 for i in range(self.row)] for k in range(self.column)])
|
|
for row_index in range(self.row):
|
|
for col_index in range(self.column):
|
|
new_matrix.array[col_index][row_index] += self.array[row_index][col_index]
|
|
return new_matrix
|
|
|
|
def inverse(self):
|
|
pass
|
|
|
|
def __str__(self):
|
|
return f'Matrix({self.array})'
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
doctest.testmod()
|
|
# Use the following line INSTEAD if you want to print all tests anyway.
|
|
# doctest.testmod(verbose = True)
|
|
|
|
|
|
m1 = Matrix([[1,1,1],[2,2,2],[3,3,3]])
|
|
d = m1.determinant()
|
|
print(d) |