Add xgboost regression class

This commit is contained in:
sosokker 2024-05-10 23:58:12 +07:00
parent e2c1097ba5
commit 86e420bd0a

View File

@ -0,0 +1,19 @@
import joblib
class XgboostIndoorModel:
MODEL_PATH = 'xgboost_model.pkl'
def __init__(self):
self.__model = joblib.load(self.MODEL_PATH)
def predict(self, X: list) -> float:
"""
Predict the indoor temperature based on the input features
Input order : ['outdoor_temp', 'outdoor_feels_like', 'outdoor_pressure',
'outdoor_humidity', 'outdoor_pm25', 'outdoor_pm10']
"""
if len(X) != 6:
raise ValueError(f"Expected 6 features, got {len(X)}")
return self.__model.predict([X])[0]