mirror of
https://github.com/Sosokker/plain-rag.git
synced 2025-12-18 14:34:05 +01:00
refactor(interface): use protocol to create module interface
This commit is contained in:
parent
80af71935f
commit
3294dafaa6
@ -38,9 +38,7 @@ async def ingest_file(
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
# Add the ingestion task to run in the background
|
||||
background_tasks.add_task(
|
||||
rag_service.ingest_document, file_path.as_posix(), file.filename
|
||||
)
|
||||
background_tasks.add_task(rag_service.ingest_document, file_path, file.filename)
|
||||
|
||||
# Immediately return a response to the user
|
||||
return {
|
||||
|
||||
22
app/core/interfaces.py
Normal file
22
app/core/interfaces.py
Normal file
@ -0,0 +1,22 @@
|
||||
from typing import Protocol, TypedDict
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class SearchResult(TypedDict):
|
||||
"""Type definition for search results."""
|
||||
|
||||
content: str
|
||||
source: str
|
||||
|
||||
|
||||
class EmbeddingModel(Protocol):
|
||||
def embed_documents(self, texts: list[str]) -> list[np.ndarray]: ...
|
||||
|
||||
def embed_query(self, text: str) -> np.ndarray: ...
|
||||
|
||||
|
||||
class VectorDB(Protocol):
|
||||
def upsert_documents(self, documents: list[dict]) -> None: ...
|
||||
|
||||
def search(self, vector: np.ndarray, top_k: int) -> list[SearchResult]: ...
|
||||
16
app/main.py
16
app/main.py
@ -5,7 +5,9 @@ from fastapi import FastAPI
|
||||
from structlog import get_logger
|
||||
|
||||
from app.api import endpoints
|
||||
from app.services.embedding_providers import MiniLMEmbeddingModel
|
||||
from app.services.rag_service import RAGService
|
||||
from app.services.vector_stores import PGVectorStore
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
@ -15,23 +17,27 @@ load_dotenv()
|
||||
# Dictionary to hold our application state, including the RAG service instance
|
||||
app_state = {}
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
embedding_provider = MiniLMEmbeddingModel()
|
||||
vector_store_provider = PGVectorStore()
|
||||
|
||||
# This code runs on startup
|
||||
logger.info("Application starting up...")
|
||||
# Initialize the RAG Service and store it in the app_state
|
||||
app_state["rag_service"] = RAGService()
|
||||
app_state["rag_service"] = RAGService(
|
||||
embedding_model=embedding_provider, vector_db=vector_store_provider
|
||||
)
|
||||
yield
|
||||
# This code runs on shutdown
|
||||
logger.info("Application shutting down...")
|
||||
app_state["rag_service"].db_conn.close() # Clean up DB connection
|
||||
app_state.clear()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
# Include the API router
|
||||
app.include_router(endpoints.router)
|
||||
|
||||
|
||||
@app.get("/")
|
||||
def read_root():
|
||||
return {"message": "Welcome to the Custom RAG API"}
|
||||
|
||||
15
app/services/embedding_providers.py
Normal file
15
app/services/embedding_providers.py
Normal file
@ -0,0 +1,15 @@
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from app.core.interfaces import EmbeddingModel
|
||||
|
||||
|
||||
class MiniLMEmbeddingModel(EmbeddingModel):
|
||||
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
||||
self.model = SentenceTransformer(model_name)
|
||||
|
||||
def embed_documents(self, texts: list[str]) -> list[np.ndarray]:
|
||||
return self.model.encode(texts).tolist()
|
||||
|
||||
def embed_query(self, text: str) -> np.ndarray:
|
||||
return self.model.encode([text])[0].tolist()
|
||||
@ -1,37 +1,16 @@
|
||||
import os
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from pathlib import Path
|
||||
from typing import TypedDict
|
||||
|
||||
import litellm
|
||||
import numpy as np
|
||||
import psycopg2
|
||||
from dotenv import load_dotenv
|
||||
from psycopg2 import extras
|
||||
from psycopg2.extensions import AsIs, register_adapter
|
||||
from PyPDF2 import PdfReader
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from structlog import get_logger
|
||||
|
||||
from app.core.config import settings
|
||||
from app.core.exception import DocumentExtractionError, DocumentInsertionError
|
||||
from app.core.interfaces import EmbeddingModel, VectorDB
|
||||
from app.core.utils import RecursiveCharacterTextSplitter
|
||||
|
||||
register_adapter(np.ndarray, AsIs) # for psycopg2 adapt
|
||||
register_adapter(np.float32, AsIs) # for psycopg2 adapt
|
||||
logger = get_logger()
|
||||
|
||||
# pyright: reportArgumentType=false
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Initialize the embedding model globally to load it only once
|
||||
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
EMBEDDING_DIM = 384 # Dimension of the all-MiniLM-L6-v2 model
|
||||
|
||||
os.environ["GEMINI_API_KEY"] = settings.GEMINI_API_KEY
|
||||
|
||||
|
||||
class AnswerResult(TypedDict):
|
||||
answer: str
|
||||
@ -39,20 +18,9 @@ class AnswerResult(TypedDict):
|
||||
|
||||
|
||||
class RAGService:
|
||||
def __init__(self):
|
||||
logger.info("Initializing RAGService...")
|
||||
# Load the embedding model ONCE
|
||||
self.embedding_model = SentenceTransformer(
|
||||
"all-MiniLM-L6-v2", device="cpu"
|
||||
) # Use 'cuda' if GPU is available
|
||||
self.db_conn = psycopg2.connect(
|
||||
host=settings.POSTGRES_SERVER,
|
||||
port=settings.POSTGRES_PORT,
|
||||
user=settings.POSTGRES_USER,
|
||||
password=settings.POSTGRES_PASSWORD,
|
||||
dbname=settings.POSTGRES_DB,
|
||||
)
|
||||
logger.info("RAGService initialized.")
|
||||
def __init__(self, embedding_model: EmbeddingModel, vector_db: VectorDB):
|
||||
self.embedding_model = embedding_model
|
||||
self.vector_db = vector_db
|
||||
self.prompt = """Answer the question based on the following context.
|
||||
If you don't know the answer, say you don't know. Don't make up an answer.
|
||||
|
||||
@ -84,135 +52,26 @@ Answer:"""
|
||||
)
|
||||
return text_splitter.split_text(text)
|
||||
|
||||
def _get_embedding(self, text: str, show_progress_bar: bool = False) -> np.ndarray:
|
||||
"""
|
||||
Generate embedding for a text chunk.
|
||||
|
||||
Args:
|
||||
text: Input text to embed
|
||||
show_progress_bar: Whether to show a progress bar
|
||||
|
||||
Returns:
|
||||
Numpy array containing the embedding vector
|
||||
|
||||
"""
|
||||
return EMBEDDING_MODEL.encode(
|
||||
text, convert_to_numpy=True, show_progress_bar=show_progress_bar
|
||||
)
|
||||
|
||||
def _store_document(
|
||||
self, contents: list[str], embeddings: list[np.ndarray], source: str
|
||||
) -> int:
|
||||
"""
|
||||
Store a document chunk in the database.
|
||||
|
||||
Args:
|
||||
contents: List of text content of the chunk
|
||||
embeddings: List of embedding vectors of the chunk
|
||||
source: Source file path
|
||||
|
||||
Returns:
|
||||
ID of the inserted document
|
||||
|
||||
"""
|
||||
data_to_insert = [
|
||||
(chunk, f"[{', '.join(map(str, embedding))}]", source)
|
||||
for chunk, embedding in zip(contents, embeddings, strict=True)
|
||||
def _ingest_document(self, text_chunks: list[str], source_name: str):
|
||||
embeddings = self.embedding_model.embed_documents(text_chunks)
|
||||
documents_to_upsert = [
|
||||
{"content": chunk, "embedding": emb, "source": source_name}
|
||||
for chunk, emb in zip(text_chunks, embeddings, strict=False)
|
||||
]
|
||||
self.vector_db.upsert_documents(documents_to_upsert)
|
||||
|
||||
query = """
|
||||
INSERT INTO documents (content, embedding, source)
|
||||
VALUES %s
|
||||
RETURNING id
|
||||
"""
|
||||
with self.db_conn.cursor() as cursor:
|
||||
extras.execute_values(
|
||||
cursor,
|
||||
query,
|
||||
data_to_insert,
|
||||
template="(%s, %s::vector, %s)",
|
||||
page_size=100,
|
||||
)
|
||||
inserted_ids = [row[0] for row in cursor.fetchall()]
|
||||
self.db_conn.commit()
|
||||
|
||||
if not inserted_ids:
|
||||
raise DocumentInsertionError("No documents were inserted.")
|
||||
|
||||
logger.info("Successfully bulk-ingested %d documents", len(inserted_ids))
|
||||
logger.info("Inserted document IDs: %s", inserted_ids)
|
||||
return inserted_ids[0]
|
||||
|
||||
def _extract_text_from_pdf(self, pdf_path: str) -> str:
|
||||
"""
|
||||
Extract text from a PDF file.
|
||||
|
||||
Args:
|
||||
pdf_path: Path to the PDF file
|
||||
|
||||
Returns:
|
||||
Extracted text as a single string
|
||||
|
||||
"""
|
||||
try:
|
||||
reader = PdfReader(pdf_path)
|
||||
text = ""
|
||||
for page in reader.pages:
|
||||
text += page.extract_text() + "\n"
|
||||
return text.strip()
|
||||
except Exception as e:
|
||||
raise DocumentExtractionError(
|
||||
"Error extracting text from PDF: " + str(e)
|
||||
) from e
|
||||
|
||||
def _get_relevant_context(self, question: str, top_k: int) -> list[tuple[str, str]]:
|
||||
"""Get the most relevant document chunks for a given question"""
|
||||
question_embedding = self.embedding_model.encode(
|
||||
question, convert_to_numpy=True
|
||||
)
|
||||
|
||||
try:
|
||||
with self.db_conn.cursor() as cursor:
|
||||
cursor.execute(
|
||||
"""
|
||||
SELECT content, source
|
||||
FROM documents
|
||||
ORDER BY embedding <-> %s::vector
|
||||
LIMIT %s
|
||||
""",
|
||||
(question_embedding.tolist(), top_k),
|
||||
)
|
||||
results = cursor.fetchall()
|
||||
return results
|
||||
except Exception as e:
|
||||
logger.exception("Error retrieving context: %s", e)
|
||||
return []
|
||||
|
||||
def ingest_document(self, file_path: str, filename: str):
|
||||
logger.info("Ingesting %s...", filename)
|
||||
if not Path(file_path).exists():
|
||||
err = f"File not found: {filename}"
|
||||
raise FileNotFoundError(err)
|
||||
|
||||
logger.info("Processing PDF: %s : %s", filename, file_path)
|
||||
|
||||
text = self._extract_text_from_pdf(file_path)
|
||||
if not text.strip():
|
||||
err = "No text could be extracted from the PDF"
|
||||
raise ValueError(err)
|
||||
|
||||
chunks = self._split_text(text)
|
||||
logger.info("Split PDF into %d chunks", len(chunks))
|
||||
|
||||
embeddings = self._get_embedding(chunks, show_progress_bar=True)
|
||||
self._store_document(chunks, embeddings, filename)
|
||||
|
||||
logger.info("Successfully processed %d chunks from %s", len(chunks), filename)
|
||||
def ingest_document(self, file_path: Path, source_name: str):
|
||||
with Path(file_path).open("r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
text_chunks = self._split_text(text)
|
||||
self._ingest_document(text_chunks, source_name)
|
||||
|
||||
def answer_query(self, question: str) -> AnswerResult:
|
||||
relevant_context = self._get_relevant_context(question, 5)
|
||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||
query_embedding = self.embedding_model.embed_query(question)
|
||||
search_results = self.vector_db.search(query_embedding, top_k=5)
|
||||
sources = list({chunk["source"] for chunk in search_results if chunk["source"]})
|
||||
|
||||
context_str = "\n\n".join([chunk["content"] for chunk in search_results])
|
||||
|
||||
try:
|
||||
response = litellm.completion(
|
||||
@ -233,14 +92,13 @@ Answer:"""
|
||||
max_tokens=500,
|
||||
)
|
||||
|
||||
answer_text = response.choices[0].message.content.strip()
|
||||
answer_text = response.choices[0].message.content.strip() # type: ignore
|
||||
|
||||
if not answer_text:
|
||||
answer_text = "No answer generated"
|
||||
sources = ["No sources"]
|
||||
|
||||
return AnswerResult(answer=answer_text, sources=sources)
|
||||
|
||||
except Exception:
|
||||
logger.exception("Error generating response")
|
||||
return AnswerResult(
|
||||
@ -248,36 +106,42 @@ Answer:"""
|
||||
)
|
||||
|
||||
def answer_query_stream(self, question: str) -> Generator[str, None, None]:
|
||||
"""Answer a query using streaming."""
|
||||
relevant_context = self._get_relevant_context(question, 5)
|
||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||
|
||||
prompt = self.prompt.format(context=context_str, question=question)
|
||||
query_embedding = self.embedding_model.embed_query(question)
|
||||
search_results = self.vector_db.search(query_embedding, top_k=5)
|
||||
sources = list({chunk["source"] for chunk in search_results if chunk["source"]})
|
||||
context_str = "\n\n".join([chunk["content"] for chunk in search_results])
|
||||
|
||||
try:
|
||||
response = litellm.completion(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant that answers questions based on the provided context.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": self.prompt.format(
|
||||
context=context_str, question=question
|
||||
),
|
||||
},
|
||||
],
|
||||
temperature=0.1,
|
||||
max_tokens=500,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# First, yield the sources so the UI can display them immediately
|
||||
import json
|
||||
|
||||
sources_json = json.dumps(sources)
|
||||
yield f'data: {{"sources": {sources_json}}}\n\n'
|
||||
|
||||
# Then, stream the answer tokens
|
||||
# Yield each chunk of the response as it's generated
|
||||
for chunk in response:
|
||||
token = chunk.choices[0].delta.content
|
||||
if token: # Ensure there's content to send
|
||||
# SSE format: data: {"token": "..."}\n\n
|
||||
yield f'data: {{"token": "{json.dumps(token)}"}}\n\n'
|
||||
if chunk.choices:
|
||||
delta = chunk.choices[0].delta
|
||||
if hasattr(delta, "content") and delta.content:
|
||||
yield f'data: {{"token": "{json.dumps(delta.content)}"}}\n\n'
|
||||
|
||||
# Signal the end of the stream with a special message
|
||||
# Yield sources at the end
|
||||
yield f'data: {{"sources": {json.dumps(sources)}}}\n\n'
|
||||
yield 'data: {"end_of_stream": true}\n\n'
|
||||
|
||||
except Exception:
|
||||
logger.exception("Error generating response")
|
||||
logger.exception("Error generating streaming response")
|
||||
yield 'data: {"error": "Error generating response"}\n\n'
|
||||
|
||||
283
app/services/rag_service_v1.py
Normal file
283
app/services/rag_service_v1.py
Normal file
@ -0,0 +1,283 @@
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
from pathlib import Path
|
||||
from typing import TypedDict
|
||||
|
||||
import litellm
|
||||
import numpy as np
|
||||
import psycopg2
|
||||
from dotenv import load_dotenv
|
||||
from psycopg2 import extras
|
||||
from psycopg2.extensions import AsIs, register_adapter
|
||||
from PyPDF2 import PdfReader
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from structlog import get_logger
|
||||
|
||||
from app.core.config import settings
|
||||
from app.core.exception import DocumentExtractionError, DocumentInsertionError
|
||||
from app.core.utils import RecursiveCharacterTextSplitter
|
||||
|
||||
register_adapter(np.ndarray, AsIs) # for psycopg2 adapt
|
||||
register_adapter(np.float32, AsIs) # for psycopg2 adapt
|
||||
logger = get_logger()
|
||||
|
||||
# pyright: reportArgumentType=false
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Initialize the embedding model globally to load it only once
|
||||
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
EMBEDDING_DIM = 384 # Dimension of the all-MiniLM-L6-v2 model
|
||||
|
||||
os.environ["GEMINI_API_KEY"] = settings.GEMINI_API_KEY
|
||||
|
||||
|
||||
class AnswerResult(TypedDict):
|
||||
answer: str
|
||||
sources: list[str]
|
||||
|
||||
|
||||
class RAGService:
|
||||
def __init__(self):
|
||||
logger.info("Initializing RAGService...")
|
||||
# Load the embedding model ONCE
|
||||
self.embedding_model = SentenceTransformer(
|
||||
"all-MiniLM-L6-v2", device="cpu"
|
||||
) # Use 'cuda' if GPU is available
|
||||
self.db_conn = psycopg2.connect(
|
||||
host=settings.POSTGRES_SERVER,
|
||||
port=settings.POSTGRES_PORT,
|
||||
user=settings.POSTGRES_USER,
|
||||
password=settings.POSTGRES_PASSWORD,
|
||||
dbname=settings.POSTGRES_DB,
|
||||
)
|
||||
logger.info("RAGService initialized.")
|
||||
self.prompt = """Answer the question based on the following context.
|
||||
If you don't know the answer, say you don't know. Don't make up an answer.
|
||||
|
||||
Context:
|
||||
{context}
|
||||
|
||||
Question: {question}
|
||||
|
||||
Answer:"""
|
||||
|
||||
def _split_text(
|
||||
self, text: str, chunk_size: int = 500, chunk_overlap: int = 100
|
||||
) -> list[str]:
|
||||
"""
|
||||
Split text into chunks with specified size and overlap.
|
||||
|
||||
Args:
|
||||
text: Input text to split
|
||||
chunk_size: Maximum size of each chunk in characters
|
||||
chunk_overlap: Number of characters to overlap between chunks
|
||||
|
||||
Returns:
|
||||
List of text chunks
|
||||
|
||||
"""
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=chunk_size,
|
||||
chunk_overlap=chunk_overlap,
|
||||
)
|
||||
return text_splitter.split_text(text)
|
||||
|
||||
def _get_embedding(self, text: str, show_progress_bar: bool = False) -> np.ndarray:
|
||||
"""
|
||||
Generate embedding for a text chunk.
|
||||
|
||||
Args:
|
||||
text: Input text to embed
|
||||
show_progress_bar: Whether to show a progress bar
|
||||
|
||||
Returns:
|
||||
Numpy array containing the embedding vector
|
||||
|
||||
"""
|
||||
return EMBEDDING_MODEL.encode(
|
||||
text, convert_to_numpy=True, show_progress_bar=show_progress_bar
|
||||
)
|
||||
|
||||
def _store_document(
|
||||
self, contents: list[str], embeddings: list[np.ndarray], source: str
|
||||
) -> int:
|
||||
"""
|
||||
Store a document chunk in the database.
|
||||
|
||||
Args:
|
||||
contents: List of text content of the chunk
|
||||
embeddings: List of embedding vectors of the chunk
|
||||
source: Source file path
|
||||
|
||||
Returns:
|
||||
ID of the inserted document
|
||||
|
||||
"""
|
||||
data_to_insert = [
|
||||
(chunk, f"[{', '.join(map(str, embedding))}]", source)
|
||||
for chunk, embedding in zip(contents, embeddings, strict=True)
|
||||
]
|
||||
|
||||
query = """
|
||||
INSERT INTO documents (content, embedding, source)
|
||||
VALUES %s
|
||||
RETURNING id
|
||||
"""
|
||||
with self.db_conn.cursor() as cursor:
|
||||
extras.execute_values(
|
||||
cursor,
|
||||
query,
|
||||
data_to_insert,
|
||||
template="(%s, %s::vector, %s)",
|
||||
page_size=100,
|
||||
)
|
||||
inserted_ids = [row[0] for row in cursor.fetchall()]
|
||||
self.db_conn.commit()
|
||||
|
||||
if not inserted_ids:
|
||||
raise DocumentInsertionError("No documents were inserted.")
|
||||
|
||||
logger.info("Successfully bulk-ingested %d documents", len(inserted_ids))
|
||||
logger.info("Inserted document IDs: %s", inserted_ids)
|
||||
return inserted_ids[0]
|
||||
|
||||
def _extract_text_from_pdf(self, pdf_path: str) -> str:
|
||||
"""
|
||||
Extract text from a PDF file.
|
||||
|
||||
Args:
|
||||
pdf_path: Path to the PDF file
|
||||
|
||||
Returns:
|
||||
Extracted text as a single string
|
||||
|
||||
"""
|
||||
try:
|
||||
reader = PdfReader(pdf_path)
|
||||
text = ""
|
||||
for page in reader.pages:
|
||||
text += page.extract_text() + "\n"
|
||||
return text.strip()
|
||||
except Exception as e:
|
||||
raise DocumentExtractionError(
|
||||
"Error extracting text from PDF: " + str(e)
|
||||
) from e
|
||||
|
||||
def _get_relevant_context(self, question: str, top_k: int) -> list[tuple[str, str]]:
|
||||
"""Get the most relevant document chunks for a given question"""
|
||||
question_embedding = self.embedding_model.encode(
|
||||
question, convert_to_numpy=True
|
||||
)
|
||||
|
||||
try:
|
||||
with self.db_conn.cursor() as cursor:
|
||||
cursor.execute(
|
||||
"""
|
||||
SELECT content, source
|
||||
FROM documents
|
||||
ORDER BY embedding <-> %s::vector
|
||||
LIMIT %s
|
||||
""",
|
||||
(question_embedding.tolist(), top_k),
|
||||
)
|
||||
results = cursor.fetchall()
|
||||
return results
|
||||
except Exception as e:
|
||||
logger.exception("Error retrieving context: %s", e)
|
||||
return []
|
||||
|
||||
def ingest_document(self, file_path: str, filename: str):
|
||||
logger.info("Ingesting %s...", filename)
|
||||
if not Path(file_path).exists():
|
||||
err = f"File not found: {filename}"
|
||||
raise FileNotFoundError(err)
|
||||
|
||||
logger.info("Processing PDF: %s : %s", filename, file_path)
|
||||
|
||||
text = self._extract_text_from_pdf(file_path)
|
||||
if not text.strip():
|
||||
err = "No text could be extracted from the PDF"
|
||||
raise ValueError(err)
|
||||
|
||||
chunks = self._split_text(text)
|
||||
logger.info("Split PDF into %d chunks", len(chunks))
|
||||
|
||||
embeddings = self._get_embedding(chunks, show_progress_bar=True)
|
||||
self._store_document(chunks, embeddings, filename)
|
||||
|
||||
logger.info("Successfully processed %d chunks from %s", len(chunks), filename)
|
||||
|
||||
def answer_query(self, question: str) -> AnswerResult:
|
||||
relevant_context = self._get_relevant_context(question, 5)
|
||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||
|
||||
try:
|
||||
response = litellm.completion(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant that answers questions based on the provided context.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": self.prompt.format(
|
||||
context=context_str, question=question
|
||||
),
|
||||
},
|
||||
],
|
||||
temperature=0.1,
|
||||
max_tokens=500,
|
||||
)
|
||||
|
||||
answer_text = response.choices[0].message.content.strip()
|
||||
|
||||
if not answer_text:
|
||||
answer_text = "No answer generated"
|
||||
sources = ["No sources"]
|
||||
|
||||
return AnswerResult(answer=answer_text, sources=sources)
|
||||
|
||||
except Exception:
|
||||
logger.exception("Error generating response")
|
||||
return AnswerResult(
|
||||
answer="Error generating response", sources=["No sources"]
|
||||
)
|
||||
|
||||
def answer_query_stream(self, question: str) -> Generator[str, None, None]:
|
||||
"""Answer a query using streaming."""
|
||||
relevant_context = self._get_relevant_context(question, 5)
|
||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||
|
||||
prompt = self.prompt.format(context=context_str, question=question)
|
||||
|
||||
try:
|
||||
response = litellm.completion(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# First, yield the sources so the UI can display them immediately
|
||||
import json
|
||||
|
||||
sources_json = json.dumps(sources)
|
||||
yield f'data: {{"sources": {sources_json}}}\n\n'
|
||||
|
||||
# Then, stream the answer tokens
|
||||
for chunk in response:
|
||||
token = chunk.choices[0].delta.content
|
||||
if token: # Ensure there's content to send
|
||||
# SSE format: data: {"token": "..."}\n\n
|
||||
yield f'data: {{"token": "{json.dumps(token)}"}}\n\n'
|
||||
|
||||
# Signal the end of the stream with a special message
|
||||
yield 'data: {"end_of_stream": true}\n\n'
|
||||
|
||||
except Exception:
|
||||
logger.exception("Error generating response")
|
||||
yield 'data: {"error": "Error generating response"}\n\n'
|
||||
113
app/services/vector_stores.py
Normal file
113
app/services/vector_stores.py
Normal file
@ -0,0 +1,113 @@
|
||||
import numpy as np
|
||||
import psycopg2
|
||||
from psycopg2.extensions import AsIs, register_adapter
|
||||
from psycopg2.extras import execute_values
|
||||
|
||||
from app.core.config import settings
|
||||
from app.core.interfaces import SearchResult, VectorDB
|
||||
|
||||
# Register NumPy array and float32 adapters for psycopg2
|
||||
register_adapter(np.ndarray, AsIs)
|
||||
register_adapter(np.float32, AsIs)
|
||||
|
||||
|
||||
class PGVectorStore(VectorDB):
|
||||
"""PostgreSQL vector store implementation for document storage and retrieval."""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def _get_connection(self):
|
||||
"""Get a new database connection."""
|
||||
return psycopg2.connect(
|
||||
host=settings.POSTGRES_SERVER,
|
||||
port=settings.POSTGRES_PORT,
|
||||
user=settings.POSTGRES_USER,
|
||||
password=settings.POSTGRES_PASSWORD,
|
||||
dbname=settings.POSTGRES_DB,
|
||||
)
|
||||
|
||||
def upsert_documents(self, documents: list[dict]) -> None:
|
||||
"""
|
||||
Upsert documents into the vector store.
|
||||
|
||||
Args:
|
||||
documents: List of document dictionaries containing 'content', 'embedding', and 'source'.
|
||||
|
||||
Raises:
|
||||
ValueError: If required fields are missing from documents.
|
||||
psycopg2.Error: For database-related errors.
|
||||
|
||||
"""
|
||||
if not documents:
|
||||
return
|
||||
|
||||
# Validate document structure
|
||||
for doc in documents:
|
||||
if not all(key in doc for key in ["content", "embedding", "source"]):
|
||||
err = "Document must contain 'content', 'embedding', and 'source' keys"
|
||||
raise ValueError(err)
|
||||
|
||||
data_to_insert = [
|
||||
(doc["content"], np.array(doc["embedding"]), doc["source"])
|
||||
for doc in documents
|
||||
]
|
||||
|
||||
query = """
|
||||
INSERT INTO documents (content, embedding, source)
|
||||
VALUES %s
|
||||
ON CONFLICT (content, source) DO UPDATE SET
|
||||
embedding = EXCLUDED.embedding,
|
||||
updated_at = NOW()
|
||||
RETURNING id
|
||||
"""
|
||||
|
||||
with self._get_connection() as conn, conn.cursor() as cursor:
|
||||
try:
|
||||
execute_values(
|
||||
cursor,
|
||||
query,
|
||||
data_to_insert,
|
||||
template="(%s, %s::vector, %s)",
|
||||
page_size=100,
|
||||
)
|
||||
conn.commit()
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
raise
|
||||
|
||||
def search(self, vector: np.ndarray, top_k: int = 5) -> list[SearchResult]:
|
||||
"""
|
||||
Search for similar documents using vector similarity.
|
||||
|
||||
Args:
|
||||
vector: The query vector to search with.
|
||||
top_k: Maximum number of results to return.
|
||||
|
||||
Returns:
|
||||
List of search results with content and source.
|
||||
|
||||
Raises:
|
||||
psycopg2.Error: For database-related errors.
|
||||
|
||||
"""
|
||||
if not vector:
|
||||
return []
|
||||
|
||||
query = """
|
||||
SELECT content, source
|
||||
FROM documents
|
||||
ORDER BY embedding <-> %s::vector
|
||||
LIMIT %s
|
||||
"""
|
||||
|
||||
with self._get_connection() as conn, conn.cursor() as cursor:
|
||||
try:
|
||||
cursor.execute(query, (np.array(vector).tolist(), top_k))
|
||||
return [
|
||||
SearchResult(content=row[0], source=row[1])
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
raise
|
||||
Loading…
Reference in New Issue
Block a user