mirror of
https://github.com/Sosokker/plain-rag.git
synced 2025-12-19 23:04:05 +01:00
refactor(interface): use protocol to create module interface
This commit is contained in:
parent
80af71935f
commit
3294dafaa6
@ -38,9 +38,7 @@ async def ingest_file(
|
|||||||
shutil.copyfileobj(file.file, buffer)
|
shutil.copyfileobj(file.file, buffer)
|
||||||
|
|
||||||
# Add the ingestion task to run in the background
|
# Add the ingestion task to run in the background
|
||||||
background_tasks.add_task(
|
background_tasks.add_task(rag_service.ingest_document, file_path, file.filename)
|
||||||
rag_service.ingest_document, file_path.as_posix(), file.filename
|
|
||||||
)
|
|
||||||
|
|
||||||
# Immediately return a response to the user
|
# Immediately return a response to the user
|
||||||
return {
|
return {
|
||||||
|
|||||||
22
app/core/interfaces.py
Normal file
22
app/core/interfaces.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
from typing import Protocol, TypedDict
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class SearchResult(TypedDict):
|
||||||
|
"""Type definition for search results."""
|
||||||
|
|
||||||
|
content: str
|
||||||
|
source: str
|
||||||
|
|
||||||
|
|
||||||
|
class EmbeddingModel(Protocol):
|
||||||
|
def embed_documents(self, texts: list[str]) -> list[np.ndarray]: ...
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> np.ndarray: ...
|
||||||
|
|
||||||
|
|
||||||
|
class VectorDB(Protocol):
|
||||||
|
def upsert_documents(self, documents: list[dict]) -> None: ...
|
||||||
|
|
||||||
|
def search(self, vector: np.ndarray, top_k: int) -> list[SearchResult]: ...
|
||||||
16
app/main.py
16
app/main.py
@ -5,7 +5,9 @@ from fastapi import FastAPI
|
|||||||
from structlog import get_logger
|
from structlog import get_logger
|
||||||
|
|
||||||
from app.api import endpoints
|
from app.api import endpoints
|
||||||
|
from app.services.embedding_providers import MiniLMEmbeddingModel
|
||||||
from app.services.rag_service import RAGService
|
from app.services.rag_service import RAGService
|
||||||
|
from app.services.vector_stores import PGVectorStore
|
||||||
|
|
||||||
logger = get_logger()
|
logger = get_logger()
|
||||||
|
|
||||||
@ -15,23 +17,27 @@ load_dotenv()
|
|||||||
# Dictionary to hold our application state, including the RAG service instance
|
# Dictionary to hold our application state, including the RAG service instance
|
||||||
app_state = {}
|
app_state = {}
|
||||||
|
|
||||||
|
|
||||||
@asynccontextmanager
|
@asynccontextmanager
|
||||||
async def lifespan(app: FastAPI):
|
async def lifespan(app: FastAPI):
|
||||||
|
embedding_provider = MiniLMEmbeddingModel()
|
||||||
|
vector_store_provider = PGVectorStore()
|
||||||
|
|
||||||
# This code runs on startup
|
# This code runs on startup
|
||||||
logger.info("Application starting up...")
|
logger.info("Application starting up...")
|
||||||
# Initialize the RAG Service and store it in the app_state
|
# Initialize the RAG Service and store it in the app_state
|
||||||
app_state["rag_service"] = RAGService()
|
app_state["rag_service"] = RAGService(
|
||||||
|
embedding_model=embedding_provider, vector_db=vector_store_provider
|
||||||
|
)
|
||||||
yield
|
yield
|
||||||
# This code runs on shutdown
|
|
||||||
logger.info("Application shutting down...")
|
|
||||||
app_state["rag_service"].db_conn.close() # Clean up DB connection
|
|
||||||
app_state.clear()
|
|
||||||
|
|
||||||
app = FastAPI(lifespan=lifespan)
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
|
||||||
# Include the API router
|
# Include the API router
|
||||||
app.include_router(endpoints.router)
|
app.include_router(endpoints.router)
|
||||||
|
|
||||||
|
|
||||||
@app.get("/")
|
@app.get("/")
|
||||||
def read_root():
|
def read_root():
|
||||||
return {"message": "Welcome to the Custom RAG API"}
|
return {"message": "Welcome to the Custom RAG API"}
|
||||||
|
|||||||
15
app/services/embedding_providers.py
Normal file
15
app/services/embedding_providers.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
from app.core.interfaces import EmbeddingModel
|
||||||
|
|
||||||
|
|
||||||
|
class MiniLMEmbeddingModel(EmbeddingModel):
|
||||||
|
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
||||||
|
self.model = SentenceTransformer(model_name)
|
||||||
|
|
||||||
|
def embed_documents(self, texts: list[str]) -> list[np.ndarray]:
|
||||||
|
return self.model.encode(texts).tolist()
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> np.ndarray:
|
||||||
|
return self.model.encode([text])[0].tolist()
|
||||||
@ -1,37 +1,16 @@
|
|||||||
import os
|
import json
|
||||||
from collections.abc import Generator
|
from collections.abc import Generator
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TypedDict
|
from typing import TypedDict
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
import numpy as np
|
|
||||||
import psycopg2
|
|
||||||
from dotenv import load_dotenv
|
|
||||||
from psycopg2 import extras
|
|
||||||
from psycopg2.extensions import AsIs, register_adapter
|
|
||||||
from PyPDF2 import PdfReader
|
|
||||||
from sentence_transformers import SentenceTransformer
|
|
||||||
from structlog import get_logger
|
from structlog import get_logger
|
||||||
|
|
||||||
from app.core.config import settings
|
from app.core.interfaces import EmbeddingModel, VectorDB
|
||||||
from app.core.exception import DocumentExtractionError, DocumentInsertionError
|
|
||||||
from app.core.utils import RecursiveCharacterTextSplitter
|
from app.core.utils import RecursiveCharacterTextSplitter
|
||||||
|
|
||||||
register_adapter(np.ndarray, AsIs) # for psycopg2 adapt
|
|
||||||
register_adapter(np.float32, AsIs) # for psycopg2 adapt
|
|
||||||
logger = get_logger()
|
logger = get_logger()
|
||||||
|
|
||||||
# pyright: reportArgumentType=false
|
|
||||||
|
|
||||||
# Load environment variables
|
|
||||||
load_dotenv()
|
|
||||||
|
|
||||||
# Initialize the embedding model globally to load it only once
|
|
||||||
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
|
||||||
EMBEDDING_DIM = 384 # Dimension of the all-MiniLM-L6-v2 model
|
|
||||||
|
|
||||||
os.environ["GEMINI_API_KEY"] = settings.GEMINI_API_KEY
|
|
||||||
|
|
||||||
|
|
||||||
class AnswerResult(TypedDict):
|
class AnswerResult(TypedDict):
|
||||||
answer: str
|
answer: str
|
||||||
@ -39,20 +18,9 @@ class AnswerResult(TypedDict):
|
|||||||
|
|
||||||
|
|
||||||
class RAGService:
|
class RAGService:
|
||||||
def __init__(self):
|
def __init__(self, embedding_model: EmbeddingModel, vector_db: VectorDB):
|
||||||
logger.info("Initializing RAGService...")
|
self.embedding_model = embedding_model
|
||||||
# Load the embedding model ONCE
|
self.vector_db = vector_db
|
||||||
self.embedding_model = SentenceTransformer(
|
|
||||||
"all-MiniLM-L6-v2", device="cpu"
|
|
||||||
) # Use 'cuda' if GPU is available
|
|
||||||
self.db_conn = psycopg2.connect(
|
|
||||||
host=settings.POSTGRES_SERVER,
|
|
||||||
port=settings.POSTGRES_PORT,
|
|
||||||
user=settings.POSTGRES_USER,
|
|
||||||
password=settings.POSTGRES_PASSWORD,
|
|
||||||
dbname=settings.POSTGRES_DB,
|
|
||||||
)
|
|
||||||
logger.info("RAGService initialized.")
|
|
||||||
self.prompt = """Answer the question based on the following context.
|
self.prompt = """Answer the question based on the following context.
|
||||||
If you don't know the answer, say you don't know. Don't make up an answer.
|
If you don't know the answer, say you don't know. Don't make up an answer.
|
||||||
|
|
||||||
@ -84,135 +52,26 @@ Answer:"""
|
|||||||
)
|
)
|
||||||
return text_splitter.split_text(text)
|
return text_splitter.split_text(text)
|
||||||
|
|
||||||
def _get_embedding(self, text: str, show_progress_bar: bool = False) -> np.ndarray:
|
def _ingest_document(self, text_chunks: list[str], source_name: str):
|
||||||
"""
|
embeddings = self.embedding_model.embed_documents(text_chunks)
|
||||||
Generate embedding for a text chunk.
|
documents_to_upsert = [
|
||||||
|
{"content": chunk, "embedding": emb, "source": source_name}
|
||||||
Args:
|
for chunk, emb in zip(text_chunks, embeddings, strict=False)
|
||||||
text: Input text to embed
|
|
||||||
show_progress_bar: Whether to show a progress bar
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Numpy array containing the embedding vector
|
|
||||||
|
|
||||||
"""
|
|
||||||
return EMBEDDING_MODEL.encode(
|
|
||||||
text, convert_to_numpy=True, show_progress_bar=show_progress_bar
|
|
||||||
)
|
|
||||||
|
|
||||||
def _store_document(
|
|
||||||
self, contents: list[str], embeddings: list[np.ndarray], source: str
|
|
||||||
) -> int:
|
|
||||||
"""
|
|
||||||
Store a document chunk in the database.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
contents: List of text content of the chunk
|
|
||||||
embeddings: List of embedding vectors of the chunk
|
|
||||||
source: Source file path
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
ID of the inserted document
|
|
||||||
|
|
||||||
"""
|
|
||||||
data_to_insert = [
|
|
||||||
(chunk, f"[{', '.join(map(str, embedding))}]", source)
|
|
||||||
for chunk, embedding in zip(contents, embeddings, strict=True)
|
|
||||||
]
|
]
|
||||||
|
self.vector_db.upsert_documents(documents_to_upsert)
|
||||||
|
|
||||||
query = """
|
def ingest_document(self, file_path: Path, source_name: str):
|
||||||
INSERT INTO documents (content, embedding, source)
|
with Path(file_path).open("r", encoding="utf-8") as f:
|
||||||
VALUES %s
|
text = f.read()
|
||||||
RETURNING id
|
text_chunks = self._split_text(text)
|
||||||
"""
|
self._ingest_document(text_chunks, source_name)
|
||||||
with self.db_conn.cursor() as cursor:
|
|
||||||
extras.execute_values(
|
|
||||||
cursor,
|
|
||||||
query,
|
|
||||||
data_to_insert,
|
|
||||||
template="(%s, %s::vector, %s)",
|
|
||||||
page_size=100,
|
|
||||||
)
|
|
||||||
inserted_ids = [row[0] for row in cursor.fetchall()]
|
|
||||||
self.db_conn.commit()
|
|
||||||
|
|
||||||
if not inserted_ids:
|
|
||||||
raise DocumentInsertionError("No documents were inserted.")
|
|
||||||
|
|
||||||
logger.info("Successfully bulk-ingested %d documents", len(inserted_ids))
|
|
||||||
logger.info("Inserted document IDs: %s", inserted_ids)
|
|
||||||
return inserted_ids[0]
|
|
||||||
|
|
||||||
def _extract_text_from_pdf(self, pdf_path: str) -> str:
|
|
||||||
"""
|
|
||||||
Extract text from a PDF file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
pdf_path: Path to the PDF file
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Extracted text as a single string
|
|
||||||
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
reader = PdfReader(pdf_path)
|
|
||||||
text = ""
|
|
||||||
for page in reader.pages:
|
|
||||||
text += page.extract_text() + "\n"
|
|
||||||
return text.strip()
|
|
||||||
except Exception as e:
|
|
||||||
raise DocumentExtractionError(
|
|
||||||
"Error extracting text from PDF: " + str(e)
|
|
||||||
) from e
|
|
||||||
|
|
||||||
def _get_relevant_context(self, question: str, top_k: int) -> list[tuple[str, str]]:
|
|
||||||
"""Get the most relevant document chunks for a given question"""
|
|
||||||
question_embedding = self.embedding_model.encode(
|
|
||||||
question, convert_to_numpy=True
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
with self.db_conn.cursor() as cursor:
|
|
||||||
cursor.execute(
|
|
||||||
"""
|
|
||||||
SELECT content, source
|
|
||||||
FROM documents
|
|
||||||
ORDER BY embedding <-> %s::vector
|
|
||||||
LIMIT %s
|
|
||||||
""",
|
|
||||||
(question_embedding.tolist(), top_k),
|
|
||||||
)
|
|
||||||
results = cursor.fetchall()
|
|
||||||
return results
|
|
||||||
except Exception as e:
|
|
||||||
logger.exception("Error retrieving context: %s", e)
|
|
||||||
return []
|
|
||||||
|
|
||||||
def ingest_document(self, file_path: str, filename: str):
|
|
||||||
logger.info("Ingesting %s...", filename)
|
|
||||||
if not Path(file_path).exists():
|
|
||||||
err = f"File not found: {filename}"
|
|
||||||
raise FileNotFoundError(err)
|
|
||||||
|
|
||||||
logger.info("Processing PDF: %s : %s", filename, file_path)
|
|
||||||
|
|
||||||
text = self._extract_text_from_pdf(file_path)
|
|
||||||
if not text.strip():
|
|
||||||
err = "No text could be extracted from the PDF"
|
|
||||||
raise ValueError(err)
|
|
||||||
|
|
||||||
chunks = self._split_text(text)
|
|
||||||
logger.info("Split PDF into %d chunks", len(chunks))
|
|
||||||
|
|
||||||
embeddings = self._get_embedding(chunks, show_progress_bar=True)
|
|
||||||
self._store_document(chunks, embeddings, filename)
|
|
||||||
|
|
||||||
logger.info("Successfully processed %d chunks from %s", len(chunks), filename)
|
|
||||||
|
|
||||||
def answer_query(self, question: str) -> AnswerResult:
|
def answer_query(self, question: str) -> AnswerResult:
|
||||||
relevant_context = self._get_relevant_context(question, 5)
|
query_embedding = self.embedding_model.embed_query(question)
|
||||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
search_results = self.vector_db.search(query_embedding, top_k=5)
|
||||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
sources = list({chunk["source"] for chunk in search_results if chunk["source"]})
|
||||||
|
|
||||||
|
context_str = "\n\n".join([chunk["content"] for chunk in search_results])
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = litellm.completion(
|
response = litellm.completion(
|
||||||
@ -233,14 +92,13 @@ Answer:"""
|
|||||||
max_tokens=500,
|
max_tokens=500,
|
||||||
)
|
)
|
||||||
|
|
||||||
answer_text = response.choices[0].message.content.strip()
|
answer_text = response.choices[0].message.content.strip() # type: ignore
|
||||||
|
|
||||||
if not answer_text:
|
if not answer_text:
|
||||||
answer_text = "No answer generated"
|
answer_text = "No answer generated"
|
||||||
sources = ["No sources"]
|
sources = ["No sources"]
|
||||||
|
|
||||||
return AnswerResult(answer=answer_text, sources=sources)
|
return AnswerResult(answer=answer_text, sources=sources)
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
logger.exception("Error generating response")
|
logger.exception("Error generating response")
|
||||||
return AnswerResult(
|
return AnswerResult(
|
||||||
@ -248,36 +106,42 @@ Answer:"""
|
|||||||
)
|
)
|
||||||
|
|
||||||
def answer_query_stream(self, question: str) -> Generator[str, None, None]:
|
def answer_query_stream(self, question: str) -> Generator[str, None, None]:
|
||||||
"""Answer a query using streaming."""
|
query_embedding = self.embedding_model.embed_query(question)
|
||||||
relevant_context = self._get_relevant_context(question, 5)
|
search_results = self.vector_db.search(query_embedding, top_k=5)
|
||||||
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
sources = list({chunk["source"] for chunk in search_results if chunk["source"]})
|
||||||
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
context_str = "\n\n".join([chunk["content"] for chunk in search_results])
|
||||||
|
|
||||||
prompt = self.prompt.format(context=context_str, question=question)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = litellm.completion(
|
response = litellm.completion(
|
||||||
model="gemini/gemini-2.0-flash",
|
model="gemini/gemini-2.0-flash",
|
||||||
messages=[{"role": "user", "content": prompt}],
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful assistant that answers questions based on the provided context.",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": self.prompt.format(
|
||||||
|
context=context_str, question=question
|
||||||
|
),
|
||||||
|
},
|
||||||
|
],
|
||||||
|
temperature=0.1,
|
||||||
|
max_tokens=500,
|
||||||
stream=True,
|
stream=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
# First, yield the sources so the UI can display them immediately
|
# Yield each chunk of the response as it's generated
|
||||||
import json
|
|
||||||
|
|
||||||
sources_json = json.dumps(sources)
|
|
||||||
yield f'data: {{"sources": {sources_json}}}\n\n'
|
|
||||||
|
|
||||||
# Then, stream the answer tokens
|
|
||||||
for chunk in response:
|
for chunk in response:
|
||||||
token = chunk.choices[0].delta.content
|
if chunk.choices:
|
||||||
if token: # Ensure there's content to send
|
delta = chunk.choices[0].delta
|
||||||
# SSE format: data: {"token": "..."}\n\n
|
if hasattr(delta, "content") and delta.content:
|
||||||
yield f'data: {{"token": "{json.dumps(token)}"}}\n\n'
|
yield f'data: {{"token": "{json.dumps(delta.content)}"}}\n\n'
|
||||||
|
|
||||||
# Signal the end of the stream with a special message
|
# Yield sources at the end
|
||||||
|
yield f'data: {{"sources": {json.dumps(sources)}}}\n\n'
|
||||||
yield 'data: {"end_of_stream": true}\n\n'
|
yield 'data: {"end_of_stream": true}\n\n'
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
logger.exception("Error generating response")
|
logger.exception("Error generating streaming response")
|
||||||
yield 'data: {"error": "Error generating response"}\n\n'
|
yield 'data: {"error": "Error generating response"}\n\n'
|
||||||
|
|||||||
283
app/services/rag_service_v1.py
Normal file
283
app/services/rag_service_v1.py
Normal file
@ -0,0 +1,283 @@
|
|||||||
|
import os
|
||||||
|
from collections.abc import Generator
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import TypedDict
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
import numpy as np
|
||||||
|
import psycopg2
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from psycopg2 import extras
|
||||||
|
from psycopg2.extensions import AsIs, register_adapter
|
||||||
|
from PyPDF2 import PdfReader
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from structlog import get_logger
|
||||||
|
|
||||||
|
from app.core.config import settings
|
||||||
|
from app.core.exception import DocumentExtractionError, DocumentInsertionError
|
||||||
|
from app.core.utils import RecursiveCharacterTextSplitter
|
||||||
|
|
||||||
|
register_adapter(np.ndarray, AsIs) # for psycopg2 adapt
|
||||||
|
register_adapter(np.float32, AsIs) # for psycopg2 adapt
|
||||||
|
logger = get_logger()
|
||||||
|
|
||||||
|
# pyright: reportArgumentType=false
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Initialize the embedding model globally to load it only once
|
||||||
|
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
||||||
|
EMBEDDING_DIM = 384 # Dimension of the all-MiniLM-L6-v2 model
|
||||||
|
|
||||||
|
os.environ["GEMINI_API_KEY"] = settings.GEMINI_API_KEY
|
||||||
|
|
||||||
|
|
||||||
|
class AnswerResult(TypedDict):
|
||||||
|
answer: str
|
||||||
|
sources: list[str]
|
||||||
|
|
||||||
|
|
||||||
|
class RAGService:
|
||||||
|
def __init__(self):
|
||||||
|
logger.info("Initializing RAGService...")
|
||||||
|
# Load the embedding model ONCE
|
||||||
|
self.embedding_model = SentenceTransformer(
|
||||||
|
"all-MiniLM-L6-v2", device="cpu"
|
||||||
|
) # Use 'cuda' if GPU is available
|
||||||
|
self.db_conn = psycopg2.connect(
|
||||||
|
host=settings.POSTGRES_SERVER,
|
||||||
|
port=settings.POSTGRES_PORT,
|
||||||
|
user=settings.POSTGRES_USER,
|
||||||
|
password=settings.POSTGRES_PASSWORD,
|
||||||
|
dbname=settings.POSTGRES_DB,
|
||||||
|
)
|
||||||
|
logger.info("RAGService initialized.")
|
||||||
|
self.prompt = """Answer the question based on the following context.
|
||||||
|
If you don't know the answer, say you don't know. Don't make up an answer.
|
||||||
|
|
||||||
|
Context:
|
||||||
|
{context}
|
||||||
|
|
||||||
|
Question: {question}
|
||||||
|
|
||||||
|
Answer:"""
|
||||||
|
|
||||||
|
def _split_text(
|
||||||
|
self, text: str, chunk_size: int = 500, chunk_overlap: int = 100
|
||||||
|
) -> list[str]:
|
||||||
|
"""
|
||||||
|
Split text into chunks with specified size and overlap.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: Input text to split
|
||||||
|
chunk_size: Maximum size of each chunk in characters
|
||||||
|
chunk_overlap: Number of characters to overlap between chunks
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of text chunks
|
||||||
|
|
||||||
|
"""
|
||||||
|
text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
chunk_overlap=chunk_overlap,
|
||||||
|
)
|
||||||
|
return text_splitter.split_text(text)
|
||||||
|
|
||||||
|
def _get_embedding(self, text: str, show_progress_bar: bool = False) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Generate embedding for a text chunk.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: Input text to embed
|
||||||
|
show_progress_bar: Whether to show a progress bar
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Numpy array containing the embedding vector
|
||||||
|
|
||||||
|
"""
|
||||||
|
return EMBEDDING_MODEL.encode(
|
||||||
|
text, convert_to_numpy=True, show_progress_bar=show_progress_bar
|
||||||
|
)
|
||||||
|
|
||||||
|
def _store_document(
|
||||||
|
self, contents: list[str], embeddings: list[np.ndarray], source: str
|
||||||
|
) -> int:
|
||||||
|
"""
|
||||||
|
Store a document chunk in the database.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
contents: List of text content of the chunk
|
||||||
|
embeddings: List of embedding vectors of the chunk
|
||||||
|
source: Source file path
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ID of the inserted document
|
||||||
|
|
||||||
|
"""
|
||||||
|
data_to_insert = [
|
||||||
|
(chunk, f"[{', '.join(map(str, embedding))}]", source)
|
||||||
|
for chunk, embedding in zip(contents, embeddings, strict=True)
|
||||||
|
]
|
||||||
|
|
||||||
|
query = """
|
||||||
|
INSERT INTO documents (content, embedding, source)
|
||||||
|
VALUES %s
|
||||||
|
RETURNING id
|
||||||
|
"""
|
||||||
|
with self.db_conn.cursor() as cursor:
|
||||||
|
extras.execute_values(
|
||||||
|
cursor,
|
||||||
|
query,
|
||||||
|
data_to_insert,
|
||||||
|
template="(%s, %s::vector, %s)",
|
||||||
|
page_size=100,
|
||||||
|
)
|
||||||
|
inserted_ids = [row[0] for row in cursor.fetchall()]
|
||||||
|
self.db_conn.commit()
|
||||||
|
|
||||||
|
if not inserted_ids:
|
||||||
|
raise DocumentInsertionError("No documents were inserted.")
|
||||||
|
|
||||||
|
logger.info("Successfully bulk-ingested %d documents", len(inserted_ids))
|
||||||
|
logger.info("Inserted document IDs: %s", inserted_ids)
|
||||||
|
return inserted_ids[0]
|
||||||
|
|
||||||
|
def _extract_text_from_pdf(self, pdf_path: str) -> str:
|
||||||
|
"""
|
||||||
|
Extract text from a PDF file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pdf_path: Path to the PDF file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Extracted text as a single string
|
||||||
|
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
reader = PdfReader(pdf_path)
|
||||||
|
text = ""
|
||||||
|
for page in reader.pages:
|
||||||
|
text += page.extract_text() + "\n"
|
||||||
|
return text.strip()
|
||||||
|
except Exception as e:
|
||||||
|
raise DocumentExtractionError(
|
||||||
|
"Error extracting text from PDF: " + str(e)
|
||||||
|
) from e
|
||||||
|
|
||||||
|
def _get_relevant_context(self, question: str, top_k: int) -> list[tuple[str, str]]:
|
||||||
|
"""Get the most relevant document chunks for a given question"""
|
||||||
|
question_embedding = self.embedding_model.encode(
|
||||||
|
question, convert_to_numpy=True
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
with self.db_conn.cursor() as cursor:
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
SELECT content, source
|
||||||
|
FROM documents
|
||||||
|
ORDER BY embedding <-> %s::vector
|
||||||
|
LIMIT %s
|
||||||
|
""",
|
||||||
|
(question_embedding.tolist(), top_k),
|
||||||
|
)
|
||||||
|
results = cursor.fetchall()
|
||||||
|
return results
|
||||||
|
except Exception as e:
|
||||||
|
logger.exception("Error retrieving context: %s", e)
|
||||||
|
return []
|
||||||
|
|
||||||
|
def ingest_document(self, file_path: str, filename: str):
|
||||||
|
logger.info("Ingesting %s...", filename)
|
||||||
|
if not Path(file_path).exists():
|
||||||
|
err = f"File not found: {filename}"
|
||||||
|
raise FileNotFoundError(err)
|
||||||
|
|
||||||
|
logger.info("Processing PDF: %s : %s", filename, file_path)
|
||||||
|
|
||||||
|
text = self._extract_text_from_pdf(file_path)
|
||||||
|
if not text.strip():
|
||||||
|
err = "No text could be extracted from the PDF"
|
||||||
|
raise ValueError(err)
|
||||||
|
|
||||||
|
chunks = self._split_text(text)
|
||||||
|
logger.info("Split PDF into %d chunks", len(chunks))
|
||||||
|
|
||||||
|
embeddings = self._get_embedding(chunks, show_progress_bar=True)
|
||||||
|
self._store_document(chunks, embeddings, filename)
|
||||||
|
|
||||||
|
logger.info("Successfully processed %d chunks from %s", len(chunks), filename)
|
||||||
|
|
||||||
|
def answer_query(self, question: str) -> AnswerResult:
|
||||||
|
relevant_context = self._get_relevant_context(question, 5)
|
||||||
|
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||||
|
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = litellm.completion(
|
||||||
|
model="gemini/gemini-2.0-flash",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful assistant that answers questions based on the provided context.",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": self.prompt.format(
|
||||||
|
context=context_str, question=question
|
||||||
|
),
|
||||||
|
},
|
||||||
|
],
|
||||||
|
temperature=0.1,
|
||||||
|
max_tokens=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
answer_text = response.choices[0].message.content.strip()
|
||||||
|
|
||||||
|
if not answer_text:
|
||||||
|
answer_text = "No answer generated"
|
||||||
|
sources = ["No sources"]
|
||||||
|
|
||||||
|
return AnswerResult(answer=answer_text, sources=sources)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
logger.exception("Error generating response")
|
||||||
|
return AnswerResult(
|
||||||
|
answer="Error generating response", sources=["No sources"]
|
||||||
|
)
|
||||||
|
|
||||||
|
def answer_query_stream(self, question: str) -> Generator[str, None, None]:
|
||||||
|
"""Answer a query using streaming."""
|
||||||
|
relevant_context = self._get_relevant_context(question, 5)
|
||||||
|
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
||||||
|
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
||||||
|
|
||||||
|
prompt = self.prompt.format(context=context_str, question=question)
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = litellm.completion(
|
||||||
|
model="gemini/gemini-2.0-flash",
|
||||||
|
messages=[{"role": "user", "content": prompt}],
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# First, yield the sources so the UI can display them immediately
|
||||||
|
import json
|
||||||
|
|
||||||
|
sources_json = json.dumps(sources)
|
||||||
|
yield f'data: {{"sources": {sources_json}}}\n\n'
|
||||||
|
|
||||||
|
# Then, stream the answer tokens
|
||||||
|
for chunk in response:
|
||||||
|
token = chunk.choices[0].delta.content
|
||||||
|
if token: # Ensure there's content to send
|
||||||
|
# SSE format: data: {"token": "..."}\n\n
|
||||||
|
yield f'data: {{"token": "{json.dumps(token)}"}}\n\n'
|
||||||
|
|
||||||
|
# Signal the end of the stream with a special message
|
||||||
|
yield 'data: {"end_of_stream": true}\n\n'
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
logger.exception("Error generating response")
|
||||||
|
yield 'data: {"error": "Error generating response"}\n\n'
|
||||||
113
app/services/vector_stores.py
Normal file
113
app/services/vector_stores.py
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
import numpy as np
|
||||||
|
import psycopg2
|
||||||
|
from psycopg2.extensions import AsIs, register_adapter
|
||||||
|
from psycopg2.extras import execute_values
|
||||||
|
|
||||||
|
from app.core.config import settings
|
||||||
|
from app.core.interfaces import SearchResult, VectorDB
|
||||||
|
|
||||||
|
# Register NumPy array and float32 adapters for psycopg2
|
||||||
|
register_adapter(np.ndarray, AsIs)
|
||||||
|
register_adapter(np.float32, AsIs)
|
||||||
|
|
||||||
|
|
||||||
|
class PGVectorStore(VectorDB):
|
||||||
|
"""PostgreSQL vector store implementation for document storage and retrieval."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _get_connection(self):
|
||||||
|
"""Get a new database connection."""
|
||||||
|
return psycopg2.connect(
|
||||||
|
host=settings.POSTGRES_SERVER,
|
||||||
|
port=settings.POSTGRES_PORT,
|
||||||
|
user=settings.POSTGRES_USER,
|
||||||
|
password=settings.POSTGRES_PASSWORD,
|
||||||
|
dbname=settings.POSTGRES_DB,
|
||||||
|
)
|
||||||
|
|
||||||
|
def upsert_documents(self, documents: list[dict]) -> None:
|
||||||
|
"""
|
||||||
|
Upsert documents into the vector store.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
documents: List of document dictionaries containing 'content', 'embedding', and 'source'.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If required fields are missing from documents.
|
||||||
|
psycopg2.Error: For database-related errors.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if not documents:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Validate document structure
|
||||||
|
for doc in documents:
|
||||||
|
if not all(key in doc for key in ["content", "embedding", "source"]):
|
||||||
|
err = "Document must contain 'content', 'embedding', and 'source' keys"
|
||||||
|
raise ValueError(err)
|
||||||
|
|
||||||
|
data_to_insert = [
|
||||||
|
(doc["content"], np.array(doc["embedding"]), doc["source"])
|
||||||
|
for doc in documents
|
||||||
|
]
|
||||||
|
|
||||||
|
query = """
|
||||||
|
INSERT INTO documents (content, embedding, source)
|
||||||
|
VALUES %s
|
||||||
|
ON CONFLICT (content, source) DO UPDATE SET
|
||||||
|
embedding = EXCLUDED.embedding,
|
||||||
|
updated_at = NOW()
|
||||||
|
RETURNING id
|
||||||
|
"""
|
||||||
|
|
||||||
|
with self._get_connection() as conn, conn.cursor() as cursor:
|
||||||
|
try:
|
||||||
|
execute_values(
|
||||||
|
cursor,
|
||||||
|
query,
|
||||||
|
data_to_insert,
|
||||||
|
template="(%s, %s::vector, %s)",
|
||||||
|
page_size=100,
|
||||||
|
)
|
||||||
|
conn.commit()
|
||||||
|
except Exception:
|
||||||
|
conn.rollback()
|
||||||
|
raise
|
||||||
|
|
||||||
|
def search(self, vector: np.ndarray, top_k: int = 5) -> list[SearchResult]:
|
||||||
|
"""
|
||||||
|
Search for similar documents using vector similarity.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vector: The query vector to search with.
|
||||||
|
top_k: Maximum number of results to return.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of search results with content and source.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
psycopg2.Error: For database-related errors.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if not vector:
|
||||||
|
return []
|
||||||
|
|
||||||
|
query = """
|
||||||
|
SELECT content, source
|
||||||
|
FROM documents
|
||||||
|
ORDER BY embedding <-> %s::vector
|
||||||
|
LIMIT %s
|
||||||
|
"""
|
||||||
|
|
||||||
|
with self._get_connection() as conn, conn.cursor() as cursor:
|
||||||
|
try:
|
||||||
|
cursor.execute(query, (np.array(vector).tolist(), top_k))
|
||||||
|
return [
|
||||||
|
SearchResult(content=row[0], source=row[1])
|
||||||
|
for row in cursor.fetchall()
|
||||||
|
]
|
||||||
|
except Exception:
|
||||||
|
conn.rollback()
|
||||||
|
raise
|
||||||
Loading…
Reference in New Issue
Block a user