mirror of
https://github.com/Sosokker/plain-rag.git
synced 2025-12-18 14:34:05 +01:00
229 lines
7.1 KiB
Python
229 lines
7.1 KiB
Python
import os
|
|
from pathlib import Path
|
|
from typing import TypedDict
|
|
|
|
import litellm
|
|
import numpy as np
|
|
import psycopg2
|
|
from dotenv import load_dotenv
|
|
from PyPDF2 import PdfReader
|
|
from sentence_transformers import SentenceTransformer
|
|
from structlog import get_logger
|
|
|
|
from app.core.config import settings
|
|
from app.core.exception import DocumentExtractionError, DocumentInsertionError
|
|
from app.core.utils import RecursiveCharacterTextSplitter
|
|
|
|
logger = get_logger()
|
|
|
|
# pyright: reportArgumentType=false
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# Initialize the embedding model globally to load it only once
|
|
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
|
EMBEDDING_DIM = 384 # Dimension of the all-MiniLM-L6-v2 model
|
|
|
|
os.environ["GEMINI_API_KEY"] = settings.GEMINI_API_KEY
|
|
|
|
|
|
class AnswerResult(TypedDict):
|
|
answer: str
|
|
sources: list[str]
|
|
|
|
|
|
class RAGService:
|
|
def __init__(self):
|
|
logger.info("Initializing RAGService...")
|
|
# Load the embedding model ONCE
|
|
self.embedding_model = SentenceTransformer(
|
|
"all-MiniLM-L6-v2", device="cpu"
|
|
) # Use 'cuda' if GPU is available
|
|
self.db_conn = psycopg2.connect(
|
|
host=settings.POSTGRES_SERVER,
|
|
port=settings.POSTGRES_PORT,
|
|
user=settings.POSTGRES_USER,
|
|
password=settings.POSTGRES_PASSWORD,
|
|
dbname=settings.POSTGRES_DB,
|
|
)
|
|
logger.info("RAGService initialized.")
|
|
self.prompt = """Answer the question based on the following context.
|
|
If you don't know the answer, say you don't know. Don't make up an answer.
|
|
|
|
Context:
|
|
{context}
|
|
|
|
Question: {question}
|
|
|
|
Answer:"""
|
|
|
|
def _split_text(
|
|
self, text: str, chunk_size: int = 500, chunk_overlap: int = 100
|
|
) -> list[str]:
|
|
"""
|
|
Split text into chunks with specified size and overlap.
|
|
|
|
Args:
|
|
text: Input text to split
|
|
chunk_size: Maximum size of each chunk in characters
|
|
chunk_overlap: Number of characters to overlap between chunks
|
|
|
|
Returns:
|
|
List of text chunks
|
|
|
|
"""
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
)
|
|
return text_splitter.split_text(text)
|
|
|
|
def _get_embedding(self, text: str) -> np.ndarray:
|
|
"""
|
|
Generate embedding for a text chunk.
|
|
|
|
Args:
|
|
text: Input text to embed
|
|
|
|
Returns:
|
|
Numpy array containing the embedding vector
|
|
|
|
"""
|
|
return EMBEDDING_MODEL.encode(text, convert_to_numpy=True)
|
|
|
|
def _store_document(self, content: str, embedding: np.ndarray, source: str) -> int:
|
|
"""
|
|
Store a document chunk in the database.
|
|
|
|
Args:
|
|
content: Text content of the chunk
|
|
embedding: Embedding vector of the chunk
|
|
source: Source file path
|
|
|
|
Returns:
|
|
ID of the inserted document
|
|
|
|
"""
|
|
with self.db_conn.cursor() as cursor:
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO documents (content, embedding, source)
|
|
VALUES (%s, %s, %s)
|
|
RETURNING id
|
|
""",
|
|
(content, embedding.tolist(), source),
|
|
)
|
|
doc_id = cursor.fetchone()
|
|
if doc_id is None:
|
|
err = "Failed to insert document into database"
|
|
raise DocumentInsertionError(err)
|
|
self.db_conn.commit()
|
|
return doc_id[0]
|
|
|
|
def _extract_text_from_pdf(self, pdf_path: str) -> str:
|
|
"""
|
|
Extract text from a PDF file.
|
|
|
|
Args:
|
|
pdf_path: Path to the PDF file
|
|
|
|
Returns:
|
|
Extracted text as a single string
|
|
|
|
"""
|
|
try:
|
|
reader = PdfReader(pdf_path)
|
|
text = ""
|
|
for page in reader.pages:
|
|
text += page.extract_text() + "\n"
|
|
return text.strip()
|
|
except Exception as e:
|
|
raise DocumentExtractionError(
|
|
"Error extracting text from PDF: " + str(e)
|
|
) from e
|
|
|
|
def _get_relevant_context(self, question: str, top_k: int) -> list[tuple[str, str]]:
|
|
"""Get the most relevant document chunks for a given question"""
|
|
question_embedding = self.embedding_model.encode(
|
|
question, convert_to_numpy=True
|
|
)
|
|
|
|
try:
|
|
with self.db_conn.cursor() as cursor:
|
|
cursor.execute(
|
|
"""
|
|
SELECT content, source
|
|
FROM documents
|
|
ORDER BY embedding <-> %s::vector
|
|
LIMIT %s
|
|
""",
|
|
(question_embedding.tolist(), top_k),
|
|
)
|
|
results = cursor.fetchall()
|
|
return results
|
|
except Exception as e:
|
|
logger.exception("Error retrieving context: %s", e)
|
|
return []
|
|
|
|
def ingest_document(self, file_path: str, filename: str):
|
|
logger.info("Ingesting %s...", filename)
|
|
if not Path(file_path).exists():
|
|
err = f"File not found: {filename}"
|
|
raise FileNotFoundError(err)
|
|
|
|
logger.info("Processing PDF: %s : %s", filename, file_path)
|
|
|
|
text = self._extract_text_from_pdf(file_path)
|
|
if not text.strip():
|
|
err = "No text could be extracted from the PDF"
|
|
raise ValueError(err)
|
|
|
|
chunks = self._split_text(text)
|
|
logger.info("Split PDF into %d chunks", len(chunks))
|
|
|
|
for i, chunk in enumerate(chunks, 1):
|
|
logger.info("Processing chunk %d/%d", i, len(chunks))
|
|
embedding = self._get_embedding(chunk)
|
|
self._store_document(chunk, embedding, filename)
|
|
|
|
logger.info("Successfully processed %d chunks from %s", len(chunks), filename)
|
|
|
|
def answer_query(self, question: str) -> AnswerResult:
|
|
relevant_context = self._get_relevant_context(question, 5)
|
|
context_str = "\n\n".join([chunk[0] for chunk in relevant_context])
|
|
sources = list({chunk[1] for chunk in relevant_context if chunk[1]})
|
|
|
|
try:
|
|
response = litellm.completion(
|
|
model="gemini/gemini-2.0-flash",
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant that answers questions based on the provided context.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": self.prompt.format(
|
|
context=context_str, question=question
|
|
),
|
|
},
|
|
],
|
|
temperature=0.1,
|
|
max_tokens=500,
|
|
)
|
|
|
|
answer_text = response.choices[0].message.content.strip()
|
|
|
|
if not answer_text:
|
|
answer_text = "No answer generated"
|
|
sources = ["No sources"]
|
|
|
|
return AnswerResult(answer=answer_text, sources=sources)
|
|
|
|
except Exception:
|
|
logger.exception("Error generating response")
|
|
return AnswerResult(
|
|
answer="Error generating response", sources=["No sources"]
|
|
)
|